Anomaly detection on data streams for machine condition monitoring

T. Brandt, M. Grawunder, Hans-Jürgen Appelrath
{"title":"Anomaly detection on data streams for machine condition monitoring","authors":"T. Brandt, M. Grawunder, Hans-Jürgen Appelrath","doi":"10.1109/INDIN.2016.7819365","DOIUrl":null,"url":null,"abstract":"Machine Condition Monitoring (MCM) is an important topic for the reliability of industrial machines in increasingly interconnected production facilities. The analysis of a huge amount of data to get information about the machine's condition is a difficult challenge. Current solutions for these analyses are often very specific, need a lot of manual configuration or are difficult to apply. In this paper, we present a system that uses anomaly detection in data streams to find hints for faulty machines in the data. The basis of this system is a Data stream management system (DSMS), which can handle huge amounts of streaming data and simplifies the definition of analyses. Due to the anomaly detection algorithms, the approach can be applied to a variety of data and scenarios. The outcome is a system that allows live analysis of machine data for MCM.","PeriodicalId":421680,"journal":{"name":"2016 IEEE 14th International Conference on Industrial Informatics (INDIN)","volume":"318 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 14th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN.2016.7819365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Machine Condition Monitoring (MCM) is an important topic for the reliability of industrial machines in increasingly interconnected production facilities. The analysis of a huge amount of data to get information about the machine's condition is a difficult challenge. Current solutions for these analyses are often very specific, need a lot of manual configuration or are difficult to apply. In this paper, we present a system that uses anomaly detection in data streams to find hints for faulty machines in the data. The basis of this system is a Data stream management system (DSMS), which can handle huge amounts of streaming data and simplifies the definition of analyses. Due to the anomaly detection algorithms, the approach can be applied to a variety of data and scenarios. The outcome is a system that allows live analysis of machine data for MCM.
机器状态监测数据流异常检测
在日益互联的生产设施中,机器状态监测(MCM)是保证工业机器可靠性的一个重要课题。对大量数据进行分析以获取有关机器状况的信息是一项艰巨的挑战。这些分析的当前解决方案通常非常具体,需要大量的手动配置,或者很难应用。在本文中,我们提出了一个利用数据流中的异常检测来发现数据中故障机器的提示的系统。该系统的基础是一个数据流管理系统(DSMS),它可以处理大量的流数据,简化分析的定义。由于异常检测算法,该方法可以应用于各种数据和场景。其结果是一个允许实时分析MCM机器数据的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信