Mirror Symmetry for a Cusp Polynomial Landau–Ginzburg Orbifold

A. Basalaev, A. Takahashi
{"title":"Mirror Symmetry for a Cusp Polynomial Landau–Ginzburg Orbifold","authors":"A. Basalaev, A. Takahashi","doi":"10.1093/IMRN/RNAB145","DOIUrl":null,"url":null,"abstract":"For any triple of positive integers $A' = (a_1',a_2',a_3')$ and $c \\in \\mathbb{C}^*$, cusp polynomial $f_{A'} = x_1^{a_1'}+x_2^{a_2'}+x_3^{a_3'}-c^{-1}x_1x_2x_3$ is known to be mirror to Geigle-Lenzing orbifold projective line $\\mathbb{P}^1_{a_1',a_2',a_3'}$. More precisely, with a suitable choice of a primitive form, Frobenius manifold of a cusp polynomial $f_{A'}$, turns out to be isomorphic to the Frobenius manifold of the Gromov-Witten theory of $\\mathbb{P}^1_{a_1',a_2',a_3'}$. \nIn this paper we extend this mirror phenomenon to the equivariant case. Namely, for any $G$ - a symmetry group of a cusp polynomial $f_{A'}$, we introduce the Frobenius manifold of a pair $(f_{A'},G)$ and show that it is isomorphic to the Frobenius manifold of the Gromov-Witten theory of Geigle-Lenzing weighted projective line $\\mathbb{P}^1_{A,\\Lambda}$, indexed by another set $A$ and $\\Lambda$, distinct points on $\\mathbb{C}\\setminus\\{0,1\\}$. \nFor some special values of $A'$ with the special choice of $G$ it happens that $\\mathbb{P}^1_{A'} \\cong \\mathbb{P}^1_{A,\\Lambda}$. Combining our mirror symmetry isomorphism for the pair $(A,\\Lambda)$, together with the ``usual'' one for $A'$, we get certain identities of the coefficients of the Frobenius potentials. We show that these identities are equivalent to the identities between the Jacobi theta constants and Dedekind eta-function.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"52 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/IMRN/RNAB145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For any triple of positive integers $A' = (a_1',a_2',a_3')$ and $c \in \mathbb{C}^*$, cusp polynomial $f_{A'} = x_1^{a_1'}+x_2^{a_2'}+x_3^{a_3'}-c^{-1}x_1x_2x_3$ is known to be mirror to Geigle-Lenzing orbifold projective line $\mathbb{P}^1_{a_1',a_2',a_3'}$. More precisely, with a suitable choice of a primitive form, Frobenius manifold of a cusp polynomial $f_{A'}$, turns out to be isomorphic to the Frobenius manifold of the Gromov-Witten theory of $\mathbb{P}^1_{a_1',a_2',a_3'}$. In this paper we extend this mirror phenomenon to the equivariant case. Namely, for any $G$ - a symmetry group of a cusp polynomial $f_{A'}$, we introduce the Frobenius manifold of a pair $(f_{A'},G)$ and show that it is isomorphic to the Frobenius manifold of the Gromov-Witten theory of Geigle-Lenzing weighted projective line $\mathbb{P}^1_{A,\Lambda}$, indexed by another set $A$ and $\Lambda$, distinct points on $\mathbb{C}\setminus\{0,1\}$. For some special values of $A'$ with the special choice of $G$ it happens that $\mathbb{P}^1_{A'} \cong \mathbb{P}^1_{A,\Lambda}$. Combining our mirror symmetry isomorphism for the pair $(A,\Lambda)$, together with the ``usual'' one for $A'$, we get certain identities of the coefficients of the Frobenius potentials. We show that these identities are equivalent to the identities between the Jacobi theta constants and Dedekind eta-function.
尖多项式Landau-Ginzburg轨道的镜像对称性
对于任意正整数$A' = (a_1',a_2',a_3')$和$c \in \mathbb{C}^*$的三元组,已知顶点多项式$f_{A'} = x_1^{a_1'}+x_2^{a_2'}+x_3^{a_3'}-c^{-1}x_1x_2x_3$是Geigle-Lenzing轨道投影线$\mathbb{P}^1_{a_1',a_2',a_3'}$的镜像。更准确地说,如果选择合适的原始形式,顶点多项式$f_{A'}$的Frobenius流形与$\mathbb{P}^1_{a_1',a_2',a_3'}$的Gromov-Witten理论的Frobenius流形是同态的。本文将这种镜像现象推广到等变情况。即,对于任意$G$ -一个尖多项式的对称群$f_{A'}$,我们引入了一对$(f_{A'},G)$的Frobenius流形,并证明了它与Geigle-Lenzing加权投影线$\mathbb{P}^1_{A,\Lambda}$的Gromov-Witten理论的Frobenius流形同态,并由$\mathbb{C}\setminus\{0,1\}$上的另一个不同点集$A$和$\Lambda$所表示。对于一些特殊值$A'$和特殊选择$G$,发生$\mathbb{P}^1_{A'} \cong \mathbb{P}^1_{A,\Lambda}$。结合我们对$(A,\Lambda)$的镜像对称同构,以及对$A'$的“通常”同构,我们得到了Frobenius势系数的某些恒等式。我们证明了这些恒等式等价于雅可比常数和戴德金函数之间的恒等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信