Fast Computational Periscopy in Challenging Ambient Light Conditions through Optimized Preconditioning

Charles Saunders, V. Goyal
{"title":"Fast Computational Periscopy in Challenging Ambient Light Conditions through Optimized Preconditioning","authors":"Charles Saunders, V. Goyal","doi":"10.1109/ICCP51581.2021.9466264","DOIUrl":null,"url":null,"abstract":"Non-line-of-sight (NLOS) imaging is a rapidly advancing technology that provides asymmetric vision: seeing without being seen. Though limited in accuracy, resolution, and depth recovery compared to active methods, the capabilities of passive methods are especially surprising because they typically use only a single, inexpensive digital camera. One of the largest challenges in passive NLOS imaging is ambient background light, which limits the dynamic range of the measurement while carrying no useful information about the hidden part of the scene. In this work we propose a new reconstruction approach that uses an optimized linear transformation to balance the rejection of uninformative light with the retention of informative light, resulting in fast (video-rate) reconstructions of hidden scenes from photographs of a blank wall under high ambient light conditions.","PeriodicalId":132124,"journal":{"name":"2021 IEEE International Conference on Computational Photography (ICCP)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Computational Photography (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP51581.2021.9466264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Non-line-of-sight (NLOS) imaging is a rapidly advancing technology that provides asymmetric vision: seeing without being seen. Though limited in accuracy, resolution, and depth recovery compared to active methods, the capabilities of passive methods are especially surprising because they typically use only a single, inexpensive digital camera. One of the largest challenges in passive NLOS imaging is ambient background light, which limits the dynamic range of the measurement while carrying no useful information about the hidden part of the scene. In this work we propose a new reconstruction approach that uses an optimized linear transformation to balance the rejection of uninformative light with the retention of informative light, resulting in fast (video-rate) reconstructions of hidden scenes from photographs of a blank wall under high ambient light conditions.
通过优化预处理,在具有挑战性的环境光条件下快速计算潜望镜
非视距成像(NLOS)是一项快速发展的技术,它提供了不对称视觉:看到而不被看到。尽管与主动方法相比,被动方法在精度、分辨率和深度恢复方面受到限制,但其能力尤其令人惊讶,因为它们通常只使用一台廉价的数码相机。无源NLOS成像的最大挑战之一是环境背景光,它限制了测量的动态范围,同时没有携带关于场景隐藏部分的有用信息。在这项工作中,我们提出了一种新的重建方法,该方法使用优化的线性变换来平衡非信息光的拒绝和信息光的保留,从而在高环境光条件下快速(视频速率)重建空白墙壁照片中的隐藏场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信