The natural transformations between r-th order prolongation of tangent and cotangent bundles over Riemannian manifolds

Mariusz Płaszczyk
{"title":"The natural transformations between r-th order prolongation of tangent and cotangent bundles over Riemannian manifolds","authors":"Mariusz Płaszczyk","doi":"10.17951/A.2015.69.1.91","DOIUrl":null,"url":null,"abstract":"If (M, g) is a Riemannian manifold then there is the well-known base preserving vector bundle isomorphism TM → T*M given by v → g(v, –) between the tangent TM and the cotangent T*M bundles of M. In the present note first we generalize this isomorphism to the one J r TM → J r T*M between the r-th order prolongation J r TM of tangent TM and the r-th order prolongation J r T*M of cotangent T*M bundles of M. Further we describe all base preserving vector bundle maps D M (g) : J r TM → J r T*M depending on a Riemannian metric g in terms of natural (in g) tensor fields on M.","PeriodicalId":340819,"journal":{"name":"Annales Umcs, Mathematica","volume":"18 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Umcs, Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17951/A.2015.69.1.91","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

If (M, g) is a Riemannian manifold then there is the well-known base preserving vector bundle isomorphism TM → T*M given by v → g(v, –) between the tangent TM and the cotangent T*M bundles of M. In the present note first we generalize this isomorphism to the one J r TM → J r T*M between the r-th order prolongation J r TM of tangent TM and the r-th order prolongation J r T*M of cotangent T*M bundles of M. Further we describe all base preserving vector bundle maps D M (g) : J r TM → J r T*M depending on a Riemannian metric g in terms of natural (in g) tensor fields on M.
黎曼流形上正切束和余切束的r阶扩展之间的自然变换
如果(M g)是一个黎曼流形还有著名的基地保留矢量束同构TM→T * M由v→g (v)切TM和余切的M T * M包礼物注意首先我们推广这个同构的J TM→J r T * M之间的带有订单延长切TM J r TM和带有订单延长J r T * M余切T * M M .进一步描述所有基础保护向量的包捆地图D M (g):jr TM→jr T*M依赖于黎曼度规g在M上的自然张量场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信