{"title":"Electricity Consumption Modeling and Medium-Term Forecasting Based on Grouped Grey Model, GGM(1,1)","authors":"Vincent B. Getanda, P. Kihato, P. Hinga, H. Oya","doi":"10.1109/PowerAfrica49420.2020.9219919","DOIUrl":null,"url":null,"abstract":"Global electricity consumption in any developing sector is increasing faster than expected and energy demand forecasting is vital for sound-sustainable energy supply-demand management. Consequently, developing accurate electricity demand forecasting models is inevitable. In this paper we propose the Grouped Grey Model (GGM(1,1)) in modeling medium-term forecasting of electricity consumption. GGM(1,1) is subjected to electricity consumption data scenario to ascertain its ability and applicability in time series data forecasting. In addition, analysis of an empirical example validates data grouping techniques in improving the accuracy of the original grey model. Hence the accuracy of the prediction on electricity consumption is improved due to data grouping techniques. The proposed model can improve energy forecasting performance for future energy plans of management in producing and distributing power. Moreover, it can enhance smart grid benefits.","PeriodicalId":325937,"journal":{"name":"2020 IEEE PES/IAS PowerAfrica","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE PES/IAS PowerAfrica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PowerAfrica49420.2020.9219919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Global electricity consumption in any developing sector is increasing faster than expected and energy demand forecasting is vital for sound-sustainable energy supply-demand management. Consequently, developing accurate electricity demand forecasting models is inevitable. In this paper we propose the Grouped Grey Model (GGM(1,1)) in modeling medium-term forecasting of electricity consumption. GGM(1,1) is subjected to electricity consumption data scenario to ascertain its ability and applicability in time series data forecasting. In addition, analysis of an empirical example validates data grouping techniques in improving the accuracy of the original grey model. Hence the accuracy of the prediction on electricity consumption is improved due to data grouping techniques. The proposed model can improve energy forecasting performance for future energy plans of management in producing and distributing power. Moreover, it can enhance smart grid benefits.