GADT: a probability space ADT for representing and querying the physical world

Anton Faradjian, J. Gehrke, Philippe Bonnet
{"title":"GADT: a probability space ADT for representing and querying the physical world","authors":"Anton Faradjian, J. Gehrke, Philippe Bonnet","doi":"10.1109/ICDE.2002.994710","DOIUrl":null,"url":null,"abstract":"Large sensor networks are being widely deployed for measurement, detection and monitoring applications. Many of these applications involve database systems to store and process data from the physical world. This data has inherent measurement uncertainties that are properly represented by continuous probability distribution functions (PDFs). We introduce a new object-relational abstract data type (ADT) - the Gaussian ADT (GADT) - that models physical data as Gaussian PDFs, and we show that existing index structures can be used as fast access methods for GADT data. We also present a measurement-theoretic model of probabilistic data and evaluate GADT in its light.","PeriodicalId":191529,"journal":{"name":"Proceedings 18th International Conference on Data Engineering","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"88","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 18th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2002.994710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 88

Abstract

Large sensor networks are being widely deployed for measurement, detection and monitoring applications. Many of these applications involve database systems to store and process data from the physical world. This data has inherent measurement uncertainties that are properly represented by continuous probability distribution functions (PDFs). We introduce a new object-relational abstract data type (ADT) - the Gaussian ADT (GADT) - that models physical data as Gaussian PDFs, and we show that existing index structures can be used as fast access methods for GADT data. We also present a measurement-theoretic model of probabilistic data and evaluate GADT in its light.
表示和查询物理世界的概率空间ADT
大型传感器网络被广泛用于测量、检测和监控应用。这些应用程序中有许多涉及数据库系统来存储和处理来自物理世界的数据。该数据具有固有的测量不确定性,这些不确定性由连续概率分布函数(pdf)适当地表示。我们引入了一种新的对象关系抽象数据类型(ADT)——高斯抽象数据类型(GADT),它将物理数据建模为高斯pdf,并证明了现有的索引结构可以作为GADT数据的快速访问方法。我们还提出了一个概率数据的测量理论模型,并从该模型的角度对GADT进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信