Underwater vehicle near real time state estimation

Yiming Chen, Dongfang Zheng, P. Miller, J. Farrell
{"title":"Underwater vehicle near real time state estimation","authors":"Yiming Chen, Dongfang Zheng, P. Miller, J. Farrell","doi":"10.1109/CCA.2013.6662806","DOIUrl":null,"url":null,"abstract":"Acoustic time-of-flight positioning schemes are widely implemented for aiding underwater inertial navigation systems. The ping-response protocol and asynchronous nature of the returns of long-baseline (LBL) systems do not satisfy the standard assumptions necessary for Extended Kalman Filter (EKF) solutions. This paper presents a Near-Real-Time (NRT) framework for LBL aided inertial navigation. The solution proposed herein implements an optimal Bayesian state estimator over the time-frame of each LBL transponding cycle. This Maximum-A-Posteriori (MAP) solution considers all navigation sensor information collected during each LBL cycle and is computed at the conclusion of the LBL cycle. The solution between LBL cycles is computed by standard extended Kalman filter (EKF) methods for all other measurements (e.g., Doppler velocity log (DVL), pressure or compass) that satisfy the EKF assumptions. The article includes simulation results to illustrate the performance of this Near-Real-Time approach.","PeriodicalId":379739,"journal":{"name":"2013 IEEE International Conference on Control Applications (CCA)","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Control Applications (CCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2013.6662806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Acoustic time-of-flight positioning schemes are widely implemented for aiding underwater inertial navigation systems. The ping-response protocol and asynchronous nature of the returns of long-baseline (LBL) systems do not satisfy the standard assumptions necessary for Extended Kalman Filter (EKF) solutions. This paper presents a Near-Real-Time (NRT) framework for LBL aided inertial navigation. The solution proposed herein implements an optimal Bayesian state estimator over the time-frame of each LBL transponding cycle. This Maximum-A-Posteriori (MAP) solution considers all navigation sensor information collected during each LBL cycle and is computed at the conclusion of the LBL cycle. The solution between LBL cycles is computed by standard extended Kalman filter (EKF) methods for all other measurements (e.g., Doppler velocity log (DVL), pressure or compass) that satisfy the EKF assumptions. The article includes simulation results to illustrate the performance of this Near-Real-Time approach.
水下航行器近实时状态估计
声学飞行时间定位方案在辅助水下惯性导航系统中得到了广泛的应用。长基线(LBL)系统的平响应协议和返回的异步性质不满足扩展卡尔曼滤波器(EKF)解所必需的标准假设。提出了一种用于LBL辅助惯性导航的近实时(NRT)框架。本文提出的解决方案在每个LBL应答周期的时间框架内实现了最优贝叶斯状态估计。该MAP (Maximum-A-Posteriori)方法考虑了每个LBL周期中收集的所有导航传感器信息,并在LBL周期结束时进行计算。LBL周期之间的解通过标准扩展卡尔曼滤波(EKF)方法计算所有满足EKF假设的其他测量(例如,多普勒速度日志(DVL),压力或指南针)。本文包括仿真结果来说明这种近实时方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信