ALGORITMA BACKPROPAGATION DALAM MEMPREDIKSI JUMLAH KENDARAAN BERMOTOR YANG MEMBAYAR PAJAK MENURUT JENIS KENDARAAN DI KABUPATEN BATUBARA

Enjelica Rumapea, Bintang Bestari, Joose Andar Laidin Manurung, H. Handrizal, S. Solikhun
{"title":"ALGORITMA BACKPROPAGATION DALAM MEMPREDIKSI JUMLAH KENDARAAN BERMOTOR YANG MEMBAYAR PAJAK MENURUT JENIS KENDARAAN DI KABUPATEN BATUBARA","authors":"Enjelica Rumapea, Bintang Bestari, Joose Andar Laidin Manurung, H. Handrizal, S. Solikhun","doi":"10.31598/JURNALRESISTOR.V2I1.357","DOIUrl":null,"url":null,"abstract":"Tax is a source of funds for the state to overcome various problems such as social problems, improving welfare, prosperity of its people. In the Batubara district itself, the number of receipts of Motor Vehicle Taxes and the development of the number of motorized vehicles have increased but not offset by awareness of taxpayers, this is reflected in the amount of arrears and considerable fines at the Coal Samsat Office. Looking at these problems, a method that is effective in estimating the number of vehicles paying taxes in the Batubara district is needed. The data used is data from the Regency Statistics Agency. Coal through the website www.batubarakab.bps.go.id. The data is the number of motorized vehicles that pay taxes in the Coal district in the period of 2012 to 2017. The algorithm used in this study is Artificial Neural Networks with the Backpropagation method. Input variables used are 2012 data (X1), 2013 data (X2), 2014 data (X3), 2015 data (X4), 2016 data (X5) and 2017 data as targets with models training and testing architecture of 4 architectures namely 4-4-1, 4-8-1, 4-16-1, 4-32-1. The resulting output is the best pattern of ANN architecture. The best architectural model is 4-8-1 with epoch 3681, MSE 0.009744 and 100% accuracy. So that the prediction of the number of motorized vehicles that pay taxes is obtained in Batubara district.","PeriodicalId":164171,"journal":{"name":"Jurnal RESISTOR (Rekayasa Sistem Komputer)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal RESISTOR (Rekayasa Sistem Komputer)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31598/JURNALRESISTOR.V2I1.357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Tax is a source of funds for the state to overcome various problems such as social problems, improving welfare, prosperity of its people. In the Batubara district itself, the number of receipts of Motor Vehicle Taxes and the development of the number of motorized vehicles have increased but not offset by awareness of taxpayers, this is reflected in the amount of arrears and considerable fines at the Coal Samsat Office. Looking at these problems, a method that is effective in estimating the number of vehicles paying taxes in the Batubara district is needed. The data used is data from the Regency Statistics Agency. Coal through the website www.batubarakab.bps.go.id. The data is the number of motorized vehicles that pay taxes in the Coal district in the period of 2012 to 2017. The algorithm used in this study is Artificial Neural Networks with the Backpropagation method. Input variables used are 2012 data (X1), 2013 data (X2), 2014 data (X3), 2015 data (X4), 2016 data (X5) and 2017 data as targets with models training and testing architecture of 4 architectures namely 4-4-1, 4-8-1, 4-16-1, 4-32-1. The resulting output is the best pattern of ANN architecture. The best architectural model is 4-8-1 with epoch 3681, MSE 0.009744 and 100% accuracy. So that the prediction of the number of motorized vehicles that pay taxes is obtained in Batubara district.
这是一种利用资源的算法,用来预测按煤炭区车辆类型纳税的机动车的数量
税收是国家克服各种问题的资金来源,如社会问题,提高福利,繁荣人民。在巴图巴拉地区本身,汽车税收据的数目和机动车辆数目的发展有所增加,但纳税人的觉悟并没有抵消这一点,这反映在煤炭Samsat办事处拖欠的数额和相当大的罚款上。考虑到这些问题,需要一种有效估算Batubara地区纳税车辆数量的方法。所使用的数据来自摄政统计机构。煤炭通过网站www.batubarakab.bps.go.id。数据是2012年至2017年期间在煤炭区纳税的机动车数量。本研究使用的算法是带有反向传播方法的人工神经网络。输入变量以2012年数据(X1)、2013年数据(X2)、2014年数据(X3)、2015年数据(X4)、2016年数据(X5)和2017年数据为目标,采用4-4-1、4-8-1、4-16-1、4-32-1四种架构的模型训练和测试架构。得到的输出是人工神经网络体系结构的最佳模式。最佳的体系结构模型是4-8-1,epoch为3681,MSE为0.009744,准确率为100%。从而对Batubara地区的机动车纳税数量进行了预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信