Exploiting web reviews for generating customer service surveys

SMUC '10 Pub Date : 2010-10-30 DOI:10.1145/1871985.1871995
Suke Li, Zhong Chen
{"title":"Exploiting web reviews for generating customer service surveys","authors":"Suke Li, Zhong Chen","doi":"10.1145/1871985.1871995","DOIUrl":null,"url":null,"abstract":"Traditional customer satisfaction analysis relies on the work of designing, distributing, collecting and analyzing surveys. Surveys that are designed by humans may be subjective, and it is hard to know what service aspects are the most important for customers. To address this issue, this paper proposes a method of automatically generating service surveys through mining Web reviews. Candidate service aspects are extracted using simple extraction rules. Then we rank candidate service aspects in terms of their weights generated by combining co-occurrence method and linear regression method together. Experimental results demonstrate the effectiveness of the proposed method.","PeriodicalId":244822,"journal":{"name":"SMUC '10","volume":"18 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SMUC '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1871985.1871995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Traditional customer satisfaction analysis relies on the work of designing, distributing, collecting and analyzing surveys. Surveys that are designed by humans may be subjective, and it is hard to know what service aspects are the most important for customers. To address this issue, this paper proposes a method of automatically generating service surveys through mining Web reviews. Candidate service aspects are extracted using simple extraction rules. Then we rank candidate service aspects in terms of their weights generated by combining co-occurrence method and linear regression method together. Experimental results demonstrate the effectiveness of the proposed method.
利用网络评论生成客户服务调查
传统的客户满意度分析依赖于设计、分发、收集和分析调查的工作。人为设计的调查可能是主观的,很难知道哪些服务方面对客户来说是最重要的。为了解决这一问题,本文提出了一种通过挖掘Web评论自动生成服务调查的方法。使用简单的提取规则提取候选服务方面。然后结合共现法和线性回归法生成的权重对候选服务方面进行排序。实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信