Improved Genetic Algorithm for Aircraft Departure Sequencing Problem

Laijun Wang, Da-wei Hu, Rui-zi Gong
{"title":"Improved Genetic Algorithm for Aircraft Departure Sequencing Problem","authors":"Laijun Wang, Da-wei Hu, Rui-zi Gong","doi":"10.1109/WGEC.2009.125","DOIUrl":null,"url":null,"abstract":"Optimization model is build for solving the aircraft departure sequencing problem in this paper first. Then, an improved genetic algorithm (GA) using symbolic coding is proposed, where a type of total probability crossover and big probability mutation are performed. In this way, the evolutionary policy of Particle Swarm Optimization (PSO) is absorbed into the improved GA, which reduces the complexity and enhance the efficiency greatly. Last, a simulation program using basic GA, adaptive GA, and improved GA is performed. The simulation result shows that the model is effective and Improved GA has better performance than Basic GA or Adaptive GA.","PeriodicalId":277950,"journal":{"name":"2009 Third International Conference on Genetic and Evolutionary Computing","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Third International Conference on Genetic and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WGEC.2009.125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Optimization model is build for solving the aircraft departure sequencing problem in this paper first. Then, an improved genetic algorithm (GA) using symbolic coding is proposed, where a type of total probability crossover and big probability mutation are performed. In this way, the evolutionary policy of Particle Swarm Optimization (PSO) is absorbed into the improved GA, which reduces the complexity and enhance the efficiency greatly. Last, a simulation program using basic GA, adaptive GA, and improved GA is performed. The simulation result shows that the model is effective and Improved GA has better performance than Basic GA or Adaptive GA.
飞机离港排序问题的改进遗传算法
本文首先建立了求解飞机离港排序问题的优化模型。然后,提出了一种基于符号编码的改进遗传算法(GA),其中进行了一种全概率交叉和大概率突变。这种方法将粒子群算法的进化策略吸收到改进遗传算法中,大大降低了算法的复杂度,提高了算法效率。最后,给出了基于基本遗传算法、自适应遗传算法和改进遗传算法的仿真程序。仿真结果表明该模型是有效的,改进遗传算法的性能优于基本遗传算法和自适应遗传算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信