Adaptive Level Binning: A New Algorithm for Solving Sparse Triangular Systems

Buse Yilmaz, Bugrra Sipahiogrlu, Najeeb Ahmad, D. Unat
{"title":"Adaptive Level Binning: A New Algorithm for Solving Sparse Triangular Systems","authors":"Buse Yilmaz, Bugrra Sipahiogrlu, Najeeb Ahmad, D. Unat","doi":"10.1145/3368474.3368486","DOIUrl":null,"url":null,"abstract":"Sparse triangular solve (SpTRSV) is an important scientific kernel used in several applications such as preconditioners for Krylov methods. Parallelizing SpTRSV on multi-core systems is challenging since it exhibits limited parallelism due to computational dependencies and introduces high parallelization overhead due to finegrained and unbalanced nature of workloads. We propose a novel method, named Adaptive Level Binning (ALB), that addresses these challenges by eliminating redundant synchronization points and adapting the work granularity with an efficient load balancing strategy. Similar to the commonly used level-set methods for solving SpTRSV, ALB constructs level-sets of rows, where each level can be computed in parallel. Differently, ALB bins rows to levels adaptively and reduces redundant dependencies between rows. On an Intel® Xeon® Gold 6148 processor and NVIDIA® Tesla V100 GPU, ALB obtains 1.83x speedup on average and up to 5.28x speedup over Intel MKL and, over NVIDIA cuSPARSE, an average speedup of 2.80x and a maximum speedup of 39.40x for 29 matrices selected from Suite Sparse Matrix Collection.","PeriodicalId":314778,"journal":{"name":"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3368474.3368486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Sparse triangular solve (SpTRSV) is an important scientific kernel used in several applications such as preconditioners for Krylov methods. Parallelizing SpTRSV on multi-core systems is challenging since it exhibits limited parallelism due to computational dependencies and introduces high parallelization overhead due to finegrained and unbalanced nature of workloads. We propose a novel method, named Adaptive Level Binning (ALB), that addresses these challenges by eliminating redundant synchronization points and adapting the work granularity with an efficient load balancing strategy. Similar to the commonly used level-set methods for solving SpTRSV, ALB constructs level-sets of rows, where each level can be computed in parallel. Differently, ALB bins rows to levels adaptively and reduces redundant dependencies between rows. On an Intel® Xeon® Gold 6148 processor and NVIDIA® Tesla V100 GPU, ALB obtains 1.83x speedup on average and up to 5.28x speedup over Intel MKL and, over NVIDIA cuSPARSE, an average speedup of 2.80x and a maximum speedup of 39.40x for 29 matrices selected from Suite Sparse Matrix Collection.
自适应水平分组:一种求解稀疏三角形系统的新算法
稀疏三角解(SpTRSV)是一种重要的科学核,它被广泛应用于Krylov方法的预处理。在多核系统上并行SpTRSV具有挑战性,因为它由于计算依赖性而表现出有限的并行性,并且由于工作负载的细粒度和不平衡性质而引入了高并行化开销。我们提出了一种新的方法,称为自适应水平分组(ALB),该方法通过消除冗余同步点和使用有效的负载平衡策略调整工作粒度来解决这些挑战。与解决SpTRSV的常用水平集方法类似,ALB构建行水平集,其中每个级别可以并行计算。不同的是,ALB自适应地将行分组,并减少行之间的冗余依赖。在Intel®Xeon®Gold 6148处理器和NVIDIA®Tesla V100 GPU上,ALB的平均加速速度为1.83倍,比Intel MKL的加速速度高达5.28倍,比NVIDIA cuSPARSE的平均加速速度为2.80倍,从Suite Sparse Matrix Collection中选择的29个矩阵的最大加速速度为39.40倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信