Contextual Proposal Network for Action Localization

He-Yen Hsieh, Ding-Jie Chen, Tyng-Luh Liu
{"title":"Contextual Proposal Network for Action Localization","authors":"He-Yen Hsieh, Ding-Jie Chen, Tyng-Luh Liu","doi":"10.1109/WACV51458.2022.00084","DOIUrl":null,"url":null,"abstract":"This paper investigates the problem of Temporal Action Proposal (TAP) generation, which aims to provide a set of high-quality video segments that potentially contain actions events locating in long untrimmed videos. Based on the goal to distill available contextual information, we introduce a Contextual Proposal Network (CPN) composing of two context-aware mechanisms. The first mechanism, i.e., feature enhancing, integrates the inception-like module with long-range attention to capture the multi-scale temporal contexts for yielding a robust video segment representation. The second mechanism, i.e., boundary scoring, employs the bi-directional recurrent neural networks (RNN) to capture bi-directional temporal contexts that explicitly model actionness, background, and confidence of proposals. While generating and scoring proposals, such bi-directional temporal contexts are helpful to retrieve high-quality proposals of low false positives for covering the video action instances. We conduct experiments on two challenging datasets of ActivityNet-1.3 and THUMOS-14 to demonstrate the effectiveness of the proposed Contextual Proposal Network (CPN). In particular, our method respectively surpasses state-of-the-art TAP methods by 1.54% AUC on ActivityNet-1.3 test split and by 0.61% AR@200 on THUMOS-14 dataset.","PeriodicalId":297092,"journal":{"name":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV51458.2022.00084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper investigates the problem of Temporal Action Proposal (TAP) generation, which aims to provide a set of high-quality video segments that potentially contain actions events locating in long untrimmed videos. Based on the goal to distill available contextual information, we introduce a Contextual Proposal Network (CPN) composing of two context-aware mechanisms. The first mechanism, i.e., feature enhancing, integrates the inception-like module with long-range attention to capture the multi-scale temporal contexts for yielding a robust video segment representation. The second mechanism, i.e., boundary scoring, employs the bi-directional recurrent neural networks (RNN) to capture bi-directional temporal contexts that explicitly model actionness, background, and confidence of proposals. While generating and scoring proposals, such bi-directional temporal contexts are helpful to retrieve high-quality proposals of low false positives for covering the video action instances. We conduct experiments on two challenging datasets of ActivityNet-1.3 and THUMOS-14 to demonstrate the effectiveness of the proposed Contextual Proposal Network (CPN). In particular, our method respectively surpasses state-of-the-art TAP methods by 1.54% AUC on ActivityNet-1.3 test split and by 0.61% AR@200 on THUMOS-14 dataset.
行动本地化的上下文建议网络
本文研究了时间动作建议(TAP)生成问题,该问题旨在提供一组高质量的视频片段,这些视频片段可能包含位于长未修剪视频中的动作事件。基于提取可用上下文信息的目标,我们引入了一个由两种上下文感知机制组成的上下文提议网络(CPN)。第一种机制,即特征增强,将类似开始的模块与远程关注集成在一起,以捕获多尺度时间上下文,从而产生鲁棒的视频片段表示。第二种机制,即边界评分,采用双向循环神经网络(RNN)来捕获双向时间上下文,这些上下文明确地模拟提案的行动性、背景和信心。在生成和评分建议的同时,这种双向时间上下文有助于检索覆盖视频动作实例的低误报的高质量建议。我们在ActivityNet-1.3和THUMOS-14两个具有挑战性的数据集上进行了实验,以证明所提出的上下文提案网络(CPN)的有效性。特别是,我们的方法在ActivityNet-1.3测试分割上分别超过最先进的TAP方法1.54%的AUC,在THUMOS-14数据集上分别超过0.61% AR@200。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信