Combinatorial and Parametric Gradient-Free Optimization for Cyber-Physical System Design

Hongrui Zheng, Johannes Betz, Arun Ramamurthy, Hyunjee Jin, R. Mangharam
{"title":"Combinatorial and Parametric Gradient-Free Optimization for Cyber-Physical System Design","authors":"Hongrui Zheng, Johannes Betz, Arun Ramamurthy, Hyunjee Jin, R. Mangharam","doi":"10.1109/DESTION56136.2022.00012","DOIUrl":null,"url":null,"abstract":"The design and evaluation of cyber-physical systems are complex as it includes mechanical, electrical, and software components leading to a high dimensional space for architectural search and parametric tuning. For each new design, engineers need to define performance objectives, capture data from previous designs, make a model-based design, and then develop and enhance each system in each iteration. To address this problem, we present a combinatorial and parametric design space exploration and optimization technique for automatic design creation. We leverage gradient-free methods to jointly optimize the multiple domains of the cyber-physical systems. Finally, we apply this method in a DARPA design challenge where the goal is to create new designs for unmanned aerial vehicles. We evaluate the new designs on performance benchmarks and demonstrate the effectiveness of gradient-free optimization techniques in automatic design creation.","PeriodicalId":273969,"journal":{"name":"2022 IEEE Workshop on Design Automation for CPS and IoT (DESTION)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Workshop on Design Automation for CPS and IoT (DESTION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DESTION56136.2022.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The design and evaluation of cyber-physical systems are complex as it includes mechanical, electrical, and software components leading to a high dimensional space for architectural search and parametric tuning. For each new design, engineers need to define performance objectives, capture data from previous designs, make a model-based design, and then develop and enhance each system in each iteration. To address this problem, we present a combinatorial and parametric design space exploration and optimization technique for automatic design creation. We leverage gradient-free methods to jointly optimize the multiple domains of the cyber-physical systems. Finally, we apply this method in a DARPA design challenge where the goal is to create new designs for unmanned aerial vehicles. We evaluate the new designs on performance benchmarks and demonstrate the effectiveness of gradient-free optimization techniques in automatic design creation.
网络物理系统设计的组合和参数无梯度优化
网络物理系统的设计和评估是复杂的,因为它包括机械,电气和软件组件,导致高维空间的架构搜索和参数调整。对于每个新设计,工程师需要定义性能目标,从以前的设计中获取数据,进行基于模型的设计,然后在每次迭代中开发和增强每个系统。为了解决这一问题,我们提出了一种用于自动设计创建的组合和参数化设计空间探索和优化技术。我们利用无梯度方法来共同优化网络物理系统的多个域。最后,我们将此方法应用于DARPA的设计挑战,其目标是为无人机创建新的设计。我们在性能基准上评估新设计,并证明无梯度优化技术在自动设计创建中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信