Hongrui Zheng, Johannes Betz, Arun Ramamurthy, Hyunjee Jin, R. Mangharam
{"title":"Combinatorial and Parametric Gradient-Free Optimization for Cyber-Physical System Design","authors":"Hongrui Zheng, Johannes Betz, Arun Ramamurthy, Hyunjee Jin, R. Mangharam","doi":"10.1109/DESTION56136.2022.00012","DOIUrl":null,"url":null,"abstract":"The design and evaluation of cyber-physical systems are complex as it includes mechanical, electrical, and software components leading to a high dimensional space for architectural search and parametric tuning. For each new design, engineers need to define performance objectives, capture data from previous designs, make a model-based design, and then develop and enhance each system in each iteration. To address this problem, we present a combinatorial and parametric design space exploration and optimization technique for automatic design creation. We leverage gradient-free methods to jointly optimize the multiple domains of the cyber-physical systems. Finally, we apply this method in a DARPA design challenge where the goal is to create new designs for unmanned aerial vehicles. We evaluate the new designs on performance benchmarks and demonstrate the effectiveness of gradient-free optimization techniques in automatic design creation.","PeriodicalId":273969,"journal":{"name":"2022 IEEE Workshop on Design Automation for CPS and IoT (DESTION)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Workshop on Design Automation for CPS and IoT (DESTION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DESTION56136.2022.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The design and evaluation of cyber-physical systems are complex as it includes mechanical, electrical, and software components leading to a high dimensional space for architectural search and parametric tuning. For each new design, engineers need to define performance objectives, capture data from previous designs, make a model-based design, and then develop and enhance each system in each iteration. To address this problem, we present a combinatorial and parametric design space exploration and optimization technique for automatic design creation. We leverage gradient-free methods to jointly optimize the multiple domains of the cyber-physical systems. Finally, we apply this method in a DARPA design challenge where the goal is to create new designs for unmanned aerial vehicles. We evaluate the new designs on performance benchmarks and demonstrate the effectiveness of gradient-free optimization techniques in automatic design creation.