Cost minimisation technique in geo-distributed data centres

Ayesheh Ahrari Khalaf, A. H. Hashim
{"title":"Cost minimisation technique in geo-distributed data centres","authors":"Ayesheh Ahrari Khalaf, A. H. Hashim","doi":"10.1504/IJCAET.2019.10022394","DOIUrl":null,"url":null,"abstract":"Significant growth of Big Data leads to a great opportunity for data analysis. Data centres are continuously becoming more popular. At the same time data centres' cost are increasing as the amount of data is growing. Simply as Big Data is significantly increasing, data centres are facing new challenges. Hence the idea of geo-distributed data centre is introduced. This project investigates on the main challenges that data centres face and presents an enhanced technique for cost optimisation in geographical distributed data centres. Parameters involved such as task assignment, task placement, big data processing and quality of service are analysed. Analytical evaluation results show that joint parameters technique proposed outperformed separate parameter techniques in some cases even with 20% enhancement. Academic Gurobi solver is used for the evaluation.","PeriodicalId":346646,"journal":{"name":"Int. J. Comput. Aided Eng. Technol.","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Aided Eng. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCAET.2019.10022394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Significant growth of Big Data leads to a great opportunity for data analysis. Data centres are continuously becoming more popular. At the same time data centres' cost are increasing as the amount of data is growing. Simply as Big Data is significantly increasing, data centres are facing new challenges. Hence the idea of geo-distributed data centre is introduced. This project investigates on the main challenges that data centres face and presents an enhanced technique for cost optimisation in geographical distributed data centres. Parameters involved such as task assignment, task placement, big data processing and quality of service are analysed. Analytical evaluation results show that joint parameters technique proposed outperformed separate parameter techniques in some cases even with 20% enhancement. Academic Gurobi solver is used for the evaluation.
地理分布数据中心的成本最小化技术
大数据的显著增长为数据分析带来了巨大的机遇。数据中心正变得越来越流行。同时,随着数据量的增长,数据中心的成本也在增加。随着大数据的显著增长,数据中心正面临着新的挑战。因此,提出了地理分布式数据中心的概念。该项目调查了数据中心面临的主要挑战,并提出了一种在地理分布的数据中心进行成本优化的增强技术。分析了任务分配、任务布置、大数据处理和服务质量等参数。分析评价结果表明,所提出的联合参数技术在某些情况下优于单独参数技术,甚至提高了20%。使用学术古罗比求解器进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信