Daniel Marolt, J. Scheible, Göran Jerke, Vinko Marolt
{"title":"Analog layout automation via self-organization: Enhancing the novel SWARM approach","authors":"Daniel Marolt, J. Scheible, Göran Jerke, Vinko Marolt","doi":"10.1109/LASCAS.2016.7451008","DOIUrl":null,"url":null,"abstract":"This paper enhances SWARM, a novel deterministic analog layout automation approach based on the idea of cellular automata. SWARM implements a decentralized interaction model in which responsive layout modules, covering basic circuit types, autonomously move, rotate and deform themselves to let constraint-compliant, compact layout solutions emerge from a synergetic flow of self-organization. With the ability to consider design constraints both implicitly and explicitly, SWARM joins the layout quality of procedural generators with the flexibility of optimization algorithms, combining these two kinds of automation into a “bottom-up meets top-down” flow. The new enhancements are demonstrated in an OTA example, depicting the power of SWARM and its enormous potential for future developments.","PeriodicalId":129875,"journal":{"name":"2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LASCAS.2016.7451008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper enhances SWARM, a novel deterministic analog layout automation approach based on the idea of cellular automata. SWARM implements a decentralized interaction model in which responsive layout modules, covering basic circuit types, autonomously move, rotate and deform themselves to let constraint-compliant, compact layout solutions emerge from a synergetic flow of self-organization. With the ability to consider design constraints both implicitly and explicitly, SWARM joins the layout quality of procedural generators with the flexibility of optimization algorithms, combining these two kinds of automation into a “bottom-up meets top-down” flow. The new enhancements are demonstrated in an OTA example, depicting the power of SWARM and its enormous potential for future developments.