Scalable Data Generation for Evaluating Mixed-Precision Solvers

P. Luszczek, Y. Tsai, Neil Lindquist, H. Anzt, J. Dongarra
{"title":"Scalable Data Generation for Evaluating Mixed-Precision Solvers","authors":"P. Luszczek, Y. Tsai, Neil Lindquist, H. Anzt, J. Dongarra","doi":"10.1109/HPEC43674.2020.9286145","DOIUrl":null,"url":null,"abstract":"We present techniques of generating data for mixed precision solvers that allows to test those solvers in a scalable manner. Our techniques focus on mixed precision hardware and software where both the solver and the hardware can take advantage of mixing multiple floating precision formats. This allows taking advantage of recently released generation of hardware platforms that focus on ML and DNN workloads but can also be utilized for HPC applications if a new breed of algorithms is combined with the custom floating-point formats to deliver performance levels beyond the standard IEEE data types while delivering a comparable accuracy of the results.","PeriodicalId":168544,"journal":{"name":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC43674.2020.9286145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present techniques of generating data for mixed precision solvers that allows to test those solvers in a scalable manner. Our techniques focus on mixed precision hardware and software where both the solver and the hardware can take advantage of mixing multiple floating precision formats. This allows taking advantage of recently released generation of hardware platforms that focus on ML and DNN workloads but can also be utilized for HPC applications if a new breed of algorithms is combined with the custom floating-point formats to deliver performance levels beyond the standard IEEE data types while delivering a comparable accuracy of the results.
用于评估混合精度求解器的可扩展数据生成
我们提出了为混合精度求解器生成数据的技术,允许以可扩展的方式测试这些求解器。我们的技术侧重于混合精度硬件和软件,其中求解器和硬件都可以利用混合多种浮动精度格式。这允许利用最近发布的一代硬件平台,这些硬件平台专注于ML和DNN工作负载,但如果将新一代算法与自定义浮点格式相结合,则也可以用于HPC应用程序,以提供超出标准IEEE数据类型的性能水平,同时提供相当的精度结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信