Distribution Power System Resiliency Improvement Using Distributed Generation and Automated Switching

I. Diahovchenko, Gowtham Kandaperumal, A. Srivastava
{"title":"Distribution Power System Resiliency Improvement Using Distributed Generation and Automated Switching","authors":"I. Diahovchenko, Gowtham Kandaperumal, A. Srivastava","doi":"10.1109/ESS.2019.8764185","DOIUrl":null,"url":null,"abstract":"The contemporary power distribution system is facing an increase in extreme weather events, cybersecurity threats and even physical threats such as terrorism. Therefore there is a growing interest towards resiliency estimation and improvement. In this paper the resiliency enhancement strategy by means of Distributed Energy Resources and Automated Switches is presented. Resiliency scores are calculated using Analytical Hierarchy Process. The developed algorithm was validated on the modified IEEE 123 node system. It provides the most resiliency feasible network that satisfies the primary goal of serving the critical loads.","PeriodicalId":187043,"journal":{"name":"2019 IEEE 6th International Conference on Energy Smart Systems (ESS)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 6th International Conference on Energy Smart Systems (ESS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESS.2019.8764185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The contemporary power distribution system is facing an increase in extreme weather events, cybersecurity threats and even physical threats such as terrorism. Therefore there is a growing interest towards resiliency estimation and improvement. In this paper the resiliency enhancement strategy by means of Distributed Energy Resources and Automated Switches is presented. Resiliency scores are calculated using Analytical Hierarchy Process. The developed algorithm was validated on the modified IEEE 123 node system. It provides the most resiliency feasible network that satisfies the primary goal of serving the critical loads.
利用分布式发电和自动开关提高配电系统弹性
现代配电系统面临着极端天气事件、网络安全威胁甚至恐怖主义等物理威胁的增加。因此,人们对弹性评估和改进的兴趣越来越大。本文提出了一种基于分布式能源和自动化开关的弹性增强策略。弹性评分采用层次分析法计算。该算法在改进的IEEE 123节点系统上得到了验证。它提供了最具弹性的可行网络,满足服务关键负载的主要目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信