{"title":"Dynamic Calculation of Waves in Ocean Engineering Based on Damping Waves","authors":"Kothapalli Ahmad","doi":"10.38007/foe.2022.030407","DOIUrl":null,"url":null,"abstract":": With the development of numerical computer simulation technology, the application of numerical wave troughs to simulate the motion and deformation of waves and their interaction with the ground has become an important development direction of computational fluid dynamics. The purpose of this paper is to study the dynamic calculation of waves in marine engineering based on damping waves. In this paper, the study of the irregular wave reflection of numerical wave flow is based on the VOF method. Taking the turbulent motion-Reynolds equation as the governing equation, the negative work technique is used in the near-wall region. The active receiver is placed on the left side of the waveform generator. The absorbing effects of different attenuation coefficient sponge layers and the effects of different attenuation coefficient power ratios on water reflection in the tank were compared. Good cleaning power. It can be seen from the spatial distribution of the wave surface height in the water tank along the water tank that the selected attenuation coefficient of the sponge layer can reduce the traveling wave in this region by one to two times the length and width. The spectra under different reservoir conditions are in good agreement with the target. The numerical calculation results show that the wave sponge cold resistance technology adopted in this paper can avoid the reflection at the output boundary. Combined with the active wave generation technology, the irregular wave based on the VOF method does not show the numerical groove of the wave.","PeriodicalId":103481,"journal":{"name":"Frontiers in Ocean Engineering","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Ocean Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.38007/foe.2022.030407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
: With the development of numerical computer simulation technology, the application of numerical wave troughs to simulate the motion and deformation of waves and their interaction with the ground has become an important development direction of computational fluid dynamics. The purpose of this paper is to study the dynamic calculation of waves in marine engineering based on damping waves. In this paper, the study of the irregular wave reflection of numerical wave flow is based on the VOF method. Taking the turbulent motion-Reynolds equation as the governing equation, the negative work technique is used in the near-wall region. The active receiver is placed on the left side of the waveform generator. The absorbing effects of different attenuation coefficient sponge layers and the effects of different attenuation coefficient power ratios on water reflection in the tank were compared. Good cleaning power. It can be seen from the spatial distribution of the wave surface height in the water tank along the water tank that the selected attenuation coefficient of the sponge layer can reduce the traveling wave in this region by one to two times the length and width. The spectra under different reservoir conditions are in good agreement with the target. The numerical calculation results show that the wave sponge cold resistance technology adopted in this paper can avoid the reflection at the output boundary. Combined with the active wave generation technology, the irregular wave based on the VOF method does not show the numerical groove of the wave.