A Monitoring and Forewarning System for Rice Planthoppers

Wan Lin, Kuei-Tso Lee, Sheng-Jyh Wang, M. Lai, Po-Hsun Chen
{"title":"A Monitoring and Forewarning System for Rice Planthoppers","authors":"Wan Lin, Kuei-Tso Lee, Sheng-Jyh Wang, M. Lai, Po-Hsun Chen","doi":"10.18178/joaat.6.3.180-186","DOIUrl":null,"url":null,"abstract":"—We develop a monitoring and forewarning system to detect planthoppers in paddy fields. Our detection algorithm consists of two stages. At the first stage, we extract the main paddy in the middle of an image by some traditional image processing techniques. At the second stage, we use a convolutional neural network to detect planthoppers within the extracted region. Our detection model is revised from the Single Shot MultiBox Detector (SSD). The original SSD model usually misrecognizes reflected light as planthoppers since a lot of background information has been discarded in the max pooling layers of the SSD model. To solve this misrecognition problem, we propose a new kind of pooling-- Local Difference Pooling. This proposed method greatly improves the performance of planthopper detection to achieve 89.38% precision and 91.93% recall.","PeriodicalId":222254,"journal":{"name":"Journal of Advanced Agricultural Technologies","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Agricultural Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18178/joaat.6.3.180-186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

—We develop a monitoring and forewarning system to detect planthoppers in paddy fields. Our detection algorithm consists of two stages. At the first stage, we extract the main paddy in the middle of an image by some traditional image processing techniques. At the second stage, we use a convolutional neural network to detect planthoppers within the extracted region. Our detection model is revised from the Single Shot MultiBox Detector (SSD). The original SSD model usually misrecognizes reflected light as planthoppers since a lot of background information has been discarded in the max pooling layers of the SSD model. To solve this misrecognition problem, we propose a new kind of pooling-- Local Difference Pooling. This proposed method greatly improves the performance of planthopper detection to achieve 89.38% precision and 91.93% recall.
水稻飞虱监测预警系统
-建立稻田飞虱监测预警系统。我们的检测算法包括两个阶段。首先,利用传统的图像处理技术提取图像中间的主要区域。在第二阶段,我们使用卷积神经网络来检测提取区域内的飞虱。我们的检测模型是在单镜头多盒检测器(SSD)的基础上改进的。由于SSD模型的最大池化层中丢弃了大量的背景信息,原有的SSD模型通常会将反射光误认为是飞虱。为了解决这种错误识别问题,我们提出了一种新的池化——局部差分池化。该方法可达到89.38%的准确率和91.93%的召回率,大大提高了稻飞虱的检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信