Algorithmic derandomization via complexity theory

D. Sivakumar
{"title":"Algorithmic derandomization via complexity theory","authors":"D. Sivakumar","doi":"10.1145/509907.509996","DOIUrl":null,"url":null,"abstract":"We point out how the methods of Nisan [31, 32], originally developed for derandomizing space-bounded computations, may be applied to obtain polynomial-time and NC derandomizations of several probabilistic algorithms. Our list includes the randomized rounding steps of linear and semi-definite programming relaxations of optimization problems, parallel derandomization of discrepancy-type problems, and the Johnson--Lindenstrauss lemma, to name a few.A fascinating aspect of this style of derandomization is the fact that we often carry out the derandomizations directly from the statements about the correctness of probabilistic algorithms, rather than carefully mimicking their proofs.","PeriodicalId":193513,"journal":{"name":"Proceedings 17th IEEE Annual Conference on Computational Complexity","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 17th IEEE Annual Conference on Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/509907.509996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

Abstract

We point out how the methods of Nisan [31, 32], originally developed for derandomizing space-bounded computations, may be applied to obtain polynomial-time and NC derandomizations of several probabilistic algorithms. Our list includes the randomized rounding steps of linear and semi-definite programming relaxations of optimization problems, parallel derandomization of discrepancy-type problems, and the Johnson--Lindenstrauss lemma, to name a few.A fascinating aspect of this style of derandomization is the fact that we often carry out the derandomizations directly from the statements about the correctness of probabilistic algorithms, rather than carefully mimicking their proofs.
基于复杂性理论的算法非随机化
我们指出了Nisan[31,32]的方法,最初是为空间有界计算的非随机化而开发的,如何应用于几种概率算法的多项式时间和NC非随机化。我们的列表包括优化问题的线性和半确定规划松弛的随机舍入步骤,差异型问题的并行非随机化,以及Johnson- Lindenstrauss引理,仅举几例。这种非随机化风格的一个令人着迷的方面是,我们经常直接从关于概率算法正确性的陈述中执行非随机化,而不是仔细地模仿它们的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信