Trajectory Creation Towards Fast Skill Deployment in Plug-and- Produce Assembly Systems: A Gaussian-Mixture Model Approach

Melanie Zimmer, Ali Al-Yacoub, P. Ferreira, N. Lohse
{"title":"Trajectory Creation Towards Fast Skill Deployment in Plug-and- Produce Assembly Systems: A Gaussian-Mixture Model Approach","authors":"Melanie Zimmer, Ali Al-Yacoub, P. Ferreira, N. Lohse","doi":"10.31256/UKRAS19.23","DOIUrl":null,"url":null,"abstract":"In this paper, a technique that reduces the changeover time in industrial workstations is presented. A Learning from Demonstration-based algorithm is used to acquire a new skill through a series of real-world human demonstrations in which the human shows the desired task. Initially, the collected data are filtered and aligned applying Fast Dynamic Time Warping (FastDTW). Then the aligned trajectories are modelled with a Gaussian Mixture Model (GMM), which is used as an input to generate a generalisation of the motion through a Gaussian Mixture Regression (GMR). The proposed approach is set into the context of the openMOS framework to efficiently add new skills that can be performed on different workstations. The main benefit of this work in progress is providing an intuitive, simple technique to add new robotics skills to an industrial platform which accelerates the changeover phase in manufacturing scenarios.","PeriodicalId":424229,"journal":{"name":"UK-RAS19 Conference: \"Embedded Intelligence: Enabling and Supporting RAS Technologies\" Proceedings","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"UK-RAS19 Conference: \"Embedded Intelligence: Enabling and Supporting RAS Technologies\" Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31256/UKRAS19.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a technique that reduces the changeover time in industrial workstations is presented. A Learning from Demonstration-based algorithm is used to acquire a new skill through a series of real-world human demonstrations in which the human shows the desired task. Initially, the collected data are filtered and aligned applying Fast Dynamic Time Warping (FastDTW). Then the aligned trajectories are modelled with a Gaussian Mixture Model (GMM), which is used as an input to generate a generalisation of the motion through a Gaussian Mixture Regression (GMR). The proposed approach is set into the context of the openMOS framework to efficiently add new skills that can be performed on different workstations. The main benefit of this work in progress is providing an intuitive, simple technique to add new robotics skills to an industrial platform which accelerates the changeover phase in manufacturing scenarios.
即插即用装配系统中快速技能部署的轨迹创建:一种高斯混合模型方法
本文提出了一种减少工业工作站转换时间的技术。基于演示的学习算法用于通过一系列现实世界的人类演示来获得新技能,其中人类展示了所需的任务。最初,使用快速动态时间翘曲(FastDTW)对收集的数据进行过滤和对齐。然后用高斯混合模型(GMM)对对齐的轨迹进行建模,该模型用作输入,通过高斯混合回归(GMR)生成运动的泛化。所提出的方法被设置到openMOS框架的上下文中,以有效地添加可以在不同工作站上执行的新技能。这项正在进行的工作的主要好处是提供了一种直观、简单的技术,可以将新的机器人技能添加到工业平台中,从而加速制造场景中的转换阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信