Traffic Speed Estimation from Surveillance Video Data: For the 2nd NVIDIA AI City Challenge Track 1

Tingting Huang
{"title":"Traffic Speed Estimation from Surveillance Video Data: For the 2nd NVIDIA AI City Challenge Track 1","authors":"Tingting Huang","doi":"10.1109/CVPRW.2018.00029","DOIUrl":null,"url":null,"abstract":"Estimating traffic flow condition is a tough but beneficial task. In Intelligent Transportation System (ITS), many applications have been done to collect and analyze traffic data. However, the surveillance video data are still only used for engineer's manual check. To better utilize this data source, traffic flow estimation from surveillance camera should be explored. This study uses Faster Regional Convolutional Neural Network (Faster R-CNN) with ResNet 101 as the backbone to achieve multi-object detection. Then a tracking algorithm based on histogram comparison is applied to link objects across frames. Finally, this study uses warping method to convert vehicle speeds from the pixel domain to the real world. The results show that estimating vehicle speed at intersection is more challenging than in uninterrupted flow.","PeriodicalId":150600,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2018.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Estimating traffic flow condition is a tough but beneficial task. In Intelligent Transportation System (ITS), many applications have been done to collect and analyze traffic data. However, the surveillance video data are still only used for engineer's manual check. To better utilize this data source, traffic flow estimation from surveillance camera should be explored. This study uses Faster Regional Convolutional Neural Network (Faster R-CNN) with ResNet 101 as the backbone to achieve multi-object detection. Then a tracking algorithm based on histogram comparison is applied to link objects across frames. Finally, this study uses warping method to convert vehicle speeds from the pixel domain to the real world. The results show that estimating vehicle speed at intersection is more challenging than in uninterrupted flow.
基于监控视频数据的交通速度估计:第二届NVIDIA AI城市挑战赛
交通流状态估计是一项艰巨而有益的任务。在智能交通系统(ITS)中,许多应用都是收集和分析交通数据。然而,监控视频数据仍然只用于工程师的人工检查。为了更好地利用这一数据源,应该探索从监控摄像头中估计交通流量。本研究采用以ResNet 101为骨干的Faster Regional Convolutional Neural Network (Faster R-CNN)实现多目标检测。然后采用基于直方图比较的跟踪算法对跨帧的链接对象进行跟踪。最后,本研究使用翘曲方法将车辆速度从像素域转换到真实世界。结果表明,交叉口的车辆速度估计比不间断车流的车辆速度估计更具挑战性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信