Gröbner bases of ideals invariant under a commutative group: the non-modular case

J. Faugère, Jules Svartz
{"title":"Gröbner bases of ideals invariant under a commutative group: the non-modular case","authors":"J. Faugère, Jules Svartz","doi":"10.1145/2465506.2465944","DOIUrl":null,"url":null,"abstract":"We propose efficient algorithms to compute the Gröbner basis of an ideal <i>I</i> subset <i>k</i>[<i>x</i><sub>1</sub>,...,<i>x<sub>n</sub></i>] globally invariant under the action of a commutative matrix group <i>G</i>, in the non-modular case (where <i>char</i>(<i>k</i>) doesn't divide |<i>G</i>|). The idea is to simultaneously diagonalize the matrices in <i>G</i>, and apply a linear change of variables on <i>I</i> corresponding to the base-change matrix of this diagonalization. We can now suppose that the matrices acting on <i>I</i> are diagonal. This action induces a grading on the ring <i>R=k</i>[<i>x</i><sub>1</sub>,...,<i>x<sub>n</sub></i>], compatible with the degree, indexed by a group related to <i>G</i>, that we call <i>G</i>-degree. The next step is the observation that this grading is maintained during a Gröbner basis computation or even a change of ordering, which allows us to split the Macaulay matrices into |<i>G</i>| submatrices of roughly the same size. In the same way, we are able to split the canonical basis of <i>R/I</i> (the staircase) if <i>I</i> is a zero-dimensional ideal. Therefore, we derive <i>abelian</i> versions of the classical algorithms <i>F</i><sub>4</sub>, <i>F</i><sub>5</sub> or FGLM. Moreover, this new variant of <i>F</i><sub>4</sub>/ <i>F</i><sub>5</sub> allows complete parallelization of the linear algebra steps, which has been successfully implemented. On instances coming from applications (NTRU crypto-system or the Cyclic-n problem), a speed-up of more than 400 can be obtained. For example, a Gröbner basis of the Cyclic-11 problem can be solved in less than 8 hours with this variant of <i>F</i><sub>4</sub>. Moreover, using this method, we can identify new classes of polynomial systems that can be solved in polynomial time.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"236 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2465506.2465944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

We propose efficient algorithms to compute the Gröbner basis of an ideal I subset k[x1,...,xn] globally invariant under the action of a commutative matrix group G, in the non-modular case (where char(k) doesn't divide |G|). The idea is to simultaneously diagonalize the matrices in G, and apply a linear change of variables on I corresponding to the base-change matrix of this diagonalization. We can now suppose that the matrices acting on I are diagonal. This action induces a grading on the ring R=k[x1,...,xn], compatible with the degree, indexed by a group related to G, that we call G-degree. The next step is the observation that this grading is maintained during a Gröbner basis computation or even a change of ordering, which allows us to split the Macaulay matrices into |G| submatrices of roughly the same size. In the same way, we are able to split the canonical basis of R/I (the staircase) if I is a zero-dimensional ideal. Therefore, we derive abelian versions of the classical algorithms F4, F5 or FGLM. Moreover, this new variant of F4/ F5 allows complete parallelization of the linear algebra steps, which has been successfully implemented. On instances coming from applications (NTRU crypto-system or the Cyclic-n problem), a speed-up of more than 400 can be obtained. For example, a Gröbner basis of the Cyclic-11 problem can be solved in less than 8 hours with this variant of F4. Moreover, using this method, we can identify new classes of polynomial systems that can be solved in polynomial time.
Gröbner在交换群下不变的理想基:非模情况
我们提出了有效的算法来计算理想I子集k[x1,…]的Gröbner基。,xn]在交换矩阵群G的作用下全局不变,在非模情况下(其中char(k)不除|G|)。其思想是同时对角化G中的矩阵,并在I上应用变量的线性变换对应于这个对角化的基变换矩阵。现在我们可以假设作用于I的矩阵是对角的。这个作用在环R=k[x1,…],xn],与度相容,由与G相关的组来索引,我们称之为G度。下一步是观察这种分级是在Gröbner基计算甚至改变排序期间保持的,这允许我们将Macaulay矩阵拆分为大小大致相同的|G|子矩阵。以同样的方式,如果I是零维理想,我们可以拆分R/I(楼梯)的规范基。因此,我们推导了经典算法F4, F5或FGLM的阿贝尔版本。此外,F4/ F5的这种新变体允许线性代数步骤的完全并行化,这已经成功实现。对于来自应用程序的实例(NTRU加密系统或cycle -n问题),可以获得超过400的加速。例如,使用F4的这种变体可以在不到8小时的时间内解决Cyclic-11问题的Gröbner基础。此外,利用这种方法,我们可以识别出可以在多项式时间内求解的多项式系统的新类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信