Static Perturbation Theory and Derivative Properties

J. Autschbach
{"title":"Static Perturbation Theory and Derivative Properties","authors":"J. Autschbach","doi":"10.1093/OSO/9780190920807.003.0022","DOIUrl":null,"url":null,"abstract":"Perturbation theory (PT) is a method by which the energies and wavefunctions of a system of interest are expressed in terms of the known solutions of a presumably simpler reference system. The Rayleigh-Schrodinger expressions for the wavefunctions and energies of exact states are derived up to 3rd and 4th order, respectively. A simple application deals with substitution effects on the absorption color of organic chromophores. The Moller-Plesset correlation energy is derived in 2nd order (MP2). It is then shown how bi-linear perturbations associated with the electric and magnetic field operators of chapter 21 define properties such as polarizability, magnetizability or susceptibility, nuclear magnetic resonance shielding and spin-spin coupling, harmonic nuclear vibrational frequencies, and many other properties. The bi-linear magnetic perturbation energy is derived for paramagnetic systems with low-energy thermally populated degenerate states. The chapter concludes with a description of derivative techniques for approximate quantum chemical methods.","PeriodicalId":207760,"journal":{"name":"Quantum Theory for Chemical Applications","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Theory for Chemical Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/OSO/9780190920807.003.0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Perturbation theory (PT) is a method by which the energies and wavefunctions of a system of interest are expressed in terms of the known solutions of a presumably simpler reference system. The Rayleigh-Schrodinger expressions for the wavefunctions and energies of exact states are derived up to 3rd and 4th order, respectively. A simple application deals with substitution effects on the absorption color of organic chromophores. The Moller-Plesset correlation energy is derived in 2nd order (MP2). It is then shown how bi-linear perturbations associated with the electric and magnetic field operators of chapter 21 define properties such as polarizability, magnetizability or susceptibility, nuclear magnetic resonance shielding and spin-spin coupling, harmonic nuclear vibrational frequencies, and many other properties. The bi-linear magnetic perturbation energy is derived for paramagnetic systems with low-energy thermally populated degenerate states. The chapter concludes with a description of derivative techniques for approximate quantum chemical methods.
静态摄动理论及其导数性质
摄动理论(PT)是一种方法,通过这种方法,一个感兴趣的系统的能量和波函数用一个可能更简单的参考系统的已知解来表示。分别导出了三阶和四阶精确态的波函数和能量的瑞利-薛定谔表达式。一个简单的应用处理取代效应对有机发色团的吸收色。推导出二阶(MP2) Moller-Plesset相关能。然后展示了与第21章的电场和磁场算子相关的双线性扰动如何定义诸如极化性,磁化性或磁化率,核磁共振屏蔽和自旋-自旋耦合,谐波核振动频率以及许多其他性质。导出了具有低能热填充简并态的顺磁系统的双线性磁扰动能。本章最后描述了近似量子化学方法的衍生技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信