Learning to rank for determining relevant document in Indonesian-English cross language information retrieval using BM25

Syandra Sari, M. Adriani
{"title":"Learning to rank for determining relevant document in Indonesian-English cross language information retrieval using BM25","authors":"Syandra Sari, M. Adriani","doi":"10.1109/ICACSIS.2014.7065896","DOIUrl":null,"url":null,"abstract":"One important task in cross-language information retrieval (CLIR) is to determine the relevance of a document from a number of documents based on user query. In this paper we applied pointwise learning to rank in SVM (Support Vector Machine) to determine the relevance of a document and used BM25 (Best Match 25) ranking function for selecting words as features. We did the experiment in Indonesian-English CLIR The results show an average ability of SVM to identify relevant documents is 88.51%, while the average accuracy of SVM to identify non relevant documents is 88%.","PeriodicalId":443250,"journal":{"name":"2014 International Conference on Advanced Computer Science and Information System","volume":"2018 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Advanced Computer Science and Information System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS.2014.7065896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

One important task in cross-language information retrieval (CLIR) is to determine the relevance of a document from a number of documents based on user query. In this paper we applied pointwise learning to rank in SVM (Support Vector Machine) to determine the relevance of a document and used BM25 (Best Match 25) ranking function for selecting words as features. We did the experiment in Indonesian-English CLIR The results show an average ability of SVM to identify relevant documents is 88.51%, while the average accuracy of SVM to identify non relevant documents is 88%.
学习用BM25在印尼语-英语跨语言信息检索中排序确定相关文档
跨语言信息检索(CLIR)中的一项重要任务是根据用户查询从大量文档中确定文档的相关性。在本文中,我们应用点向学习对SVM(支持向量机)进行排序来确定文档的相关性,并使用BM25(最佳匹配25)排序函数来选择单词作为特征。我们在印尼语-英语CLIR中进行了实验,结果表明SVM识别相关文档的平均准确率为88.51%,而SVM识别非相关文档的平均准确率为88%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信