Linear-Delay Enumeration for Minimal Steiner Problems

Yasuaki Kobayashi, Kazuhiro Kurita, Kunihiro Wasa
{"title":"Linear-Delay Enumeration for Minimal Steiner Problems","authors":"Yasuaki Kobayashi, Kazuhiro Kurita, Kunihiro Wasa","doi":"10.1145/3517804.3524148","DOIUrl":null,"url":null,"abstract":"Kimelfeld and Sagiv [Kimelfeld and Sagiv, PODS 2006], [Kimelfeld and Sagiv, Inf. Syst. 2008] pointed out that the problem of enumerating K-fragments is of great importance in a keyword search on data graphs. In a graph-theoretic term, the problem corresponds to enumerating minimal Steiner trees in (directed) graphs. In this paper, we propose a linear-delay and polynomial-space algorithm for enumerating all minimal Steiner trees, improving on a previous result in [Kimelfeld and Sagiv, Inf. Syst. 2008]. Our enumeration algorithm can be extended to other Steiner problems, such as minimal Steiner forests, minimal terminal Steiner trees, and minimal directed Steiner trees. As another variant of the minimal Steiner tree enumeration problem, we study the problem of enumerating minimal induced Steiner subgraphs. We propose a polynomial-delay and exponential-space enumeration algorithm of minimal induced Steiner subgraphs on claw-free graphs. Contrary to these tractable results, we show that the problem of enumerating minimal group Steiner trees is at least as hard as the minimal transversal enumeration problem on hypergraphs.","PeriodicalId":230606,"journal":{"name":"Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3517804.3524148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Kimelfeld and Sagiv [Kimelfeld and Sagiv, PODS 2006], [Kimelfeld and Sagiv, Inf. Syst. 2008] pointed out that the problem of enumerating K-fragments is of great importance in a keyword search on data graphs. In a graph-theoretic term, the problem corresponds to enumerating minimal Steiner trees in (directed) graphs. In this paper, we propose a linear-delay and polynomial-space algorithm for enumerating all minimal Steiner trees, improving on a previous result in [Kimelfeld and Sagiv, Inf. Syst. 2008]. Our enumeration algorithm can be extended to other Steiner problems, such as minimal Steiner forests, minimal terminal Steiner trees, and minimal directed Steiner trees. As another variant of the minimal Steiner tree enumeration problem, we study the problem of enumerating minimal induced Steiner subgraphs. We propose a polynomial-delay and exponential-space enumeration algorithm of minimal induced Steiner subgraphs on claw-free graphs. Contrary to these tractable results, we show that the problem of enumerating minimal group Steiner trees is at least as hard as the minimal transversal enumeration problem on hypergraphs.
最小Steiner问题的线性延迟枚举
Kimelfeld和Sagiv [Kimelfeld and Sagiv, PODS 2006], [Kimelfeld and Sagiv, Inf. Syst. 2008]指出,在数据图的关键字搜索中,k片段的枚举问题是非常重要的。在图论术语中,这个问题对应于(有向)图中最小斯坦纳树的枚举。在本文中,我们提出了一种线性延迟和多项式空间算法,用于枚举所有最小Steiner树,改进了先前在[Kimelfeld和Sagiv, Inf. Syst. 2008]中的结果。我们的枚举算法可以推广到其他的斯坦纳问题,如最小斯坦纳森林、最小终端斯坦纳树和最小有向斯坦纳树。作为最小Steiner树枚举问题的另一个变体,我们研究了最小诱导Steiner子图的枚举问题。提出了无爪图上最小诱导Steiner子图的多项式延迟和指数空间枚举算法。与这些容易处理的结果相反,我们证明了枚举最小群斯坦纳树的问题至少与超图上的最小横向枚举问题一样难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信