{"title":"Modulus genetic algorithm and its application to fuzzy system optimization","authors":"Sinn-Cheng Lin","doi":"10.1109/IPMM.1999.792573","DOIUrl":null,"url":null,"abstract":"The conventional genetic algorithm encodes the searched parameters as binary strings. After applying the basic genetic operators such as reproduction, crossover and mutation, a decoding procedure is used to convert the binary strings to the original parameter space. As the result, such an encoding/decoding procedure leads to considerable numeric errors. This paper proposes a new algorithm called modulus genetic algorithm (MGA) that uses the modulus operation to resolve this problem. In the MGA, the encoding/decoding procedure is not necessary. It has the following advantages: 1) the evolution can be speeded up; 2) the numeric truncation error can be avoided; 3) the precision of solution can be increased. The proposed MGA is applied to resolve the key problem of fuzzy inference systems-rule acquisition. The fuzzy system with MGA as learning mechanism forms an \"intelligent fuzzy system\". Based on the proposed approach, the fuzzy rule base can be self-extracted and optimized.","PeriodicalId":194215,"journal":{"name":"Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials. IPMM'99 (Cat. No.99EX296)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials. IPMM'99 (Cat. No.99EX296)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPMM.1999.792573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The conventional genetic algorithm encodes the searched parameters as binary strings. After applying the basic genetic operators such as reproduction, crossover and mutation, a decoding procedure is used to convert the binary strings to the original parameter space. As the result, such an encoding/decoding procedure leads to considerable numeric errors. This paper proposes a new algorithm called modulus genetic algorithm (MGA) that uses the modulus operation to resolve this problem. In the MGA, the encoding/decoding procedure is not necessary. It has the following advantages: 1) the evolution can be speeded up; 2) the numeric truncation error can be avoided; 3) the precision of solution can be increased. The proposed MGA is applied to resolve the key problem of fuzzy inference systems-rule acquisition. The fuzzy system with MGA as learning mechanism forms an "intelligent fuzzy system". Based on the proposed approach, the fuzzy rule base can be self-extracted and optimized.