{"title":"Finite Element Models of Elastic Volcano Deformation","authors":"T. Masterlark, S. Tung","doi":"10.5772/INTECHOPEN.71156","DOIUrl":null,"url":null,"abstract":"The migration of magma within a volcano produces a deformation signature at the Earth’s surface. Inverse models of geodetic data estimate parameters that characterize the magma migration. These characterizations are tied to the specific model that relates migration to the observed deformation. A model is a simplified representation of a natural system. A modeler is tasked with the challenge of designing a model that represents the system, in the context of the available data and purpose of the model. This chapter presents a systematic approach to quantitatively simulate geodetic data with finite element models (FEMs) in the framework of a deformation modeling protocol. This chapter will (1) address the design and execution of FEMs that can account for the geophysical complexity of a volcano deformational system and (2) define techniques for including FEMs in both linear and nonlinear inverse methods to characterize a magmatic system based on observed geodetic data. With these techniques, researchers can estimate magmatic migration within active volcanoes and understand how uncertainties in the data propagate into predictions. These estimates comprise some measure of central tendency, a sense of uncertainty, and a quantification of biases.","PeriodicalId":292286,"journal":{"name":"Volcanoes - Geological and Geophysical Setting, Theoretical Aspects and Numerical Modeling, Applications to Industry and Their Impact on the Human Health","volume":"294 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volcanoes - Geological and Geophysical Setting, Theoretical Aspects and Numerical Modeling, Applications to Industry and Their Impact on the Human Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.71156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The migration of magma within a volcano produces a deformation signature at the Earth’s surface. Inverse models of geodetic data estimate parameters that characterize the magma migration. These characterizations are tied to the specific model that relates migration to the observed deformation. A model is a simplified representation of a natural system. A modeler is tasked with the challenge of designing a model that represents the system, in the context of the available data and purpose of the model. This chapter presents a systematic approach to quantitatively simulate geodetic data with finite element models (FEMs) in the framework of a deformation modeling protocol. This chapter will (1) address the design and execution of FEMs that can account for the geophysical complexity of a volcano deformational system and (2) define techniques for including FEMs in both linear and nonlinear inverse methods to characterize a magmatic system based on observed geodetic data. With these techniques, researchers can estimate magmatic migration within active volcanoes and understand how uncertainties in the data propagate into predictions. These estimates comprise some measure of central tendency, a sense of uncertainty, and a quantification of biases.