{"title":"Identifying the Context of Hurricane Posts on Twitter using Wavelet Features","authors":"A. Anam, A. Gangopadhyay, Nirmalya Roy","doi":"10.1109/SMARTCOMP.2019.00072","DOIUrl":null,"url":null,"abstract":"With the increase of natural disasters all over the world, we are in crucial need of innovative solutions with inexpensive implementations to assist the emergency response systems. Information collected through conventional sources (e.g., incident reports, 911 calls, physical volunteers, etc.) are proving to be insufficient [1]. Responsible organizations are now leaning towards research grounds that explore digital human connectivity and freely available sources of information. U.S. Geological Survey and Federal Emergency Management Agency (FEMA) introduced Critical Lifeline (CLL) s which identifies the most significant areas that require immediate attention in case of natural disasters. These organizations applied crowdsourcing by connecting digital volunteer networks to collect data on the critical lifelines from data sources including social media [3], [4], [5]. In the past couple of years, during some of the deadly hurricanes (e.g., Harvey, IRMA, Maria, Michael, Florence, etc.), people took on different social media platforms like never seen before, in search of help for rescue, shelter, and relief. Their posts reflect crisis updates and their real-time observations on the devastation that they witness. In this paper, we propose a methodology to build and analyze time-frequency features of words on social media to assist the volunteer networks in identifying the context before, during and after a natural disaster and distinguishing contexts connected to the critical lifelines. We employ Continuous Wavelet Transform to help create word features and propose two ways to reduce the dimensions which we use to create word clusters to identify themes of conversations associated with stages of a disaster and these lifelines. We compare two different methodologies of wavelet features and word clusters both qualitatively and quantitatively, to show that wavelet features can identify and separate context without using semantic information as inputs.","PeriodicalId":253364,"journal":{"name":"2019 IEEE International Conference on Smart Computing (SMARTCOMP)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Smart Computing (SMARTCOMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTCOMP.2019.00072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
With the increase of natural disasters all over the world, we are in crucial need of innovative solutions with inexpensive implementations to assist the emergency response systems. Information collected through conventional sources (e.g., incident reports, 911 calls, physical volunteers, etc.) are proving to be insufficient [1]. Responsible organizations are now leaning towards research grounds that explore digital human connectivity and freely available sources of information. U.S. Geological Survey and Federal Emergency Management Agency (FEMA) introduced Critical Lifeline (CLL) s which identifies the most significant areas that require immediate attention in case of natural disasters. These organizations applied crowdsourcing by connecting digital volunteer networks to collect data on the critical lifelines from data sources including social media [3], [4], [5]. In the past couple of years, during some of the deadly hurricanes (e.g., Harvey, IRMA, Maria, Michael, Florence, etc.), people took on different social media platforms like never seen before, in search of help for rescue, shelter, and relief. Their posts reflect crisis updates and their real-time observations on the devastation that they witness. In this paper, we propose a methodology to build and analyze time-frequency features of words on social media to assist the volunteer networks in identifying the context before, during and after a natural disaster and distinguishing contexts connected to the critical lifelines. We employ Continuous Wavelet Transform to help create word features and propose two ways to reduce the dimensions which we use to create word clusters to identify themes of conversations associated with stages of a disaster and these lifelines. We compare two different methodologies of wavelet features and word clusters both qualitatively and quantitatively, to show that wavelet features can identify and separate context without using semantic information as inputs.