Trajectorial dissipation and gradient flow for the relative entropy in Markov chains

I. Karatzas, J. Maas, W. Schachermayer
{"title":"Trajectorial dissipation and gradient flow for the relative entropy in Markov chains","authors":"I. Karatzas, J. Maas, W. Schachermayer","doi":"10.4310/CIS.2021.V21.N4.A1","DOIUrl":null,"url":null,"abstract":"We study the temporal dissipation of variance and relative entropy for ergodic Markov Chains in continuous time, and compute explicitly the corresponding dissipation rates. These are identified, as is well known, in the case of the variance in terms of an appropriate Hilbertian norm; and in the case of the relative entropy, in terms of a Dirichlet form which morphs into a version of the familiar Fisher information under conditions of detailed balance. Here we obtain trajectorial versions of these results, valid along almost every path of the random motion and most transparent in the backwards direction of time. Martingale arguments and time reversal play crucial roles, as in the recent work of Karatzas, Schachermayer and Tschiderer for conservative diffusions. Extension are developed to general \"convex divergences\" and to countable state-spaces. The steepest descent and gradient flow properties for the variance, the relative entropy, and appropriate generalizations, are studied along with their respective geometries under conditions of detailed balance, leading to a very direct proof for the HWI inequality of Otto and Villani in the present context.","PeriodicalId":185710,"journal":{"name":"Commun. Inf. Syst.","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commun. Inf. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/CIS.2021.V21.N4.A1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We study the temporal dissipation of variance and relative entropy for ergodic Markov Chains in continuous time, and compute explicitly the corresponding dissipation rates. These are identified, as is well known, in the case of the variance in terms of an appropriate Hilbertian norm; and in the case of the relative entropy, in terms of a Dirichlet form which morphs into a version of the familiar Fisher information under conditions of detailed balance. Here we obtain trajectorial versions of these results, valid along almost every path of the random motion and most transparent in the backwards direction of time. Martingale arguments and time reversal play crucial roles, as in the recent work of Karatzas, Schachermayer and Tschiderer for conservative diffusions. Extension are developed to general "convex divergences" and to countable state-spaces. The steepest descent and gradient flow properties for the variance, the relative entropy, and appropriate generalizations, are studied along with their respective geometries under conditions of detailed balance, leading to a very direct proof for the HWI inequality of Otto and Villani in the present context.
马尔可夫链中相对熵的轨迹耗散和梯度流
研究了连续时间遍历马尔可夫链的方差和相对熵的时间耗散,并明确地计算了相应的耗散率。众所周知,在方差的情况下,这些是根据适当的希尔伯特范数来确定的;在相对熵的情况下,用狄利克雷形式表示,在详细平衡的条件下,狄利克雷形式变成了我们熟悉的费雪信息的一个版本。在这里,我们得到了这些结果的轨迹版本,在随机运动的几乎所有路径上都有效,在时间的反向方向上最透明。鞅论证和时间反转起着至关重要的作用,就像Karatzas、Schachermayer和Tschiderer最近对保守扩散的研究一样。推广到一般的“凸散度”和可数状态空间。在详细平衡条件下,研究了方差的最陡下降和梯度流动特性、相对熵和适当的推广,以及它们各自的几何形状,从而在当前背景下非常直接地证明了Otto和Villani的HWI不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信