Regularized LAD algorithms for sparse time-varying system identification with outliers

Fuxi Wen, W. Liu
{"title":"Regularized LAD algorithms for sparse time-varying system identification with outliers","authors":"Fuxi Wen, W. Liu","doi":"10.1109/ICDSP.2016.7868630","DOIUrl":null,"url":null,"abstract":"Two regularized least mean absolute deviation (LAD) algorithms are proposed for sparse system identification, which are referred to as zero-attracting LAD (ZA-LAD) and re-weighted zero-attracting LAD (RZA-LAD), respectively. The LAD type algorithms are robust to the impulsive noises. Furthermore, ℓ1-norm penalty is imposed on the filter coefficients to exploit sparsity of the system. The performance of ZA-LAD type algorithms is evaluated for linear time varying system identification under impulsive noise environments through computer simulations.","PeriodicalId":206199,"journal":{"name":"2016 IEEE International Conference on Digital Signal Processing (DSP)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2016.7868630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Two regularized least mean absolute deviation (LAD) algorithms are proposed for sparse system identification, which are referred to as zero-attracting LAD (ZA-LAD) and re-weighted zero-attracting LAD (RZA-LAD), respectively. The LAD type algorithms are robust to the impulsive noises. Furthermore, ℓ1-norm penalty is imposed on the filter coefficients to exploit sparsity of the system. The performance of ZA-LAD type algorithms is evaluated for linear time varying system identification under impulsive noise environments through computer simulations.
带离群值的稀疏时变系统辨识的正则化LAD算法
提出了两种正则化最小平均绝对偏差(LAD)算法用于稀疏系统识别,分别称为零吸引最小平均绝对偏差算法(ZA-LAD)和重加权零吸引最小平均绝对偏差算法(RZA-LAD)。该算法对脉冲噪声具有较强的鲁棒性。进一步,对滤波器系数施加1范数惩罚,以利用系统的稀疏性。通过计算机仿真,评价了ZA-LAD算法在脉冲噪声环境下线性时变系统辨识中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信