Machine Learning Algorithms for Binary Classification of Liver Disease

Anton Sokoliuk, G. Kondratenko, I. Sidenko, Y. Kondratenko, Anatoly Khomchenko, I. Atamanyuk
{"title":"Machine Learning Algorithms for Binary Classification of Liver Disease","authors":"Anton Sokoliuk, G. Kondratenko, I. Sidenko, Y. Kondratenko, Anatoly Khomchenko, I. Atamanyuk","doi":"10.1109/PICST51311.2020.9468051","DOIUrl":null,"url":null,"abstract":"The number of patients with liver diseases has been continuously increasing because of excessive consumption of alcohol, inhale of harmful gases, intake of contaminated food, pickles, and drugs. Early diagnosis of liver problems will increase patients’ survival rates. Liver disease can be diagnosed by analyzing the levels of enzymes in the blood. Creating automatic classification tools may reduce the burden on doctors. To achieve this numerous classification algorithm (Decision Tree, Random Forest, SVM, Neural Net, Naive Bayes, and others) from different machine learning libraries (Scikit-learn, ML.Net, Keras) are tested against existing liver patients’ dataset, considering appropriate for each algorithm preliminary data processing. These algorithms evaluated based on three criteria: accuracy, sensitivity, specificity.","PeriodicalId":123008,"journal":{"name":"2020 IEEE International Conference on Problems of Infocommunications. Science and Technology (PIC S&T)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Problems of Infocommunications. Science and Technology (PIC S&T)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PICST51311.2020.9468051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The number of patients with liver diseases has been continuously increasing because of excessive consumption of alcohol, inhale of harmful gases, intake of contaminated food, pickles, and drugs. Early diagnosis of liver problems will increase patients’ survival rates. Liver disease can be diagnosed by analyzing the levels of enzymes in the blood. Creating automatic classification tools may reduce the burden on doctors. To achieve this numerous classification algorithm (Decision Tree, Random Forest, SVM, Neural Net, Naive Bayes, and others) from different machine learning libraries (Scikit-learn, ML.Net, Keras) are tested against existing liver patients’ dataset, considering appropriate for each algorithm preliminary data processing. These algorithms evaluated based on three criteria: accuracy, sensitivity, specificity.
肝脏疾病二元分类的机器学习算法
由于过度饮酒、吸入有害气体、食用受污染的食物、泡菜、药物等,肝脏疾病患者不断增加。肝脏问题的早期诊断将提高患者的存活率。肝病可以通过分析血液中酶的水平来诊断。创建自动分类工具可以减轻医生的负担。为了实现这个众多的分类算法(决策树,随机森林,支持向量机,神经网络,朴素贝叶斯等)从不同的机器学习库(Scikit-learn, ML.Net, Keras)针对现有的肝脏患者数据集进行测试,考虑适合每个算法的初步数据处理。这些算法基于三个标准进行评估:准确性,灵敏度,特异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信