Comparison of different feature extraction techniques in content-based image retrieval for CT brain images

Wan Siti Halimatul Munirah Wan Ahmad, M. F. A. Fauzi
{"title":"Comparison of different feature extraction techniques in content-based image retrieval for CT brain images","authors":"Wan Siti Halimatul Munirah Wan Ahmad, M. F. A. Fauzi","doi":"10.1109/MMSP.2008.4665130","DOIUrl":null,"url":null,"abstract":"Content-based image retrieval (CBIR) system helps users retrieve relevant images based on their contents. A reliable content-based feature extraction technique is therefore required to effectively extract most of the information from the images. These important elements include texture, colour, intensity or shape of the object inside an image. CBIR, when used in medical applications, can help medical experts in their diagnosis such as retrieving similar kind of disease and patientpsilas progress monitoring. In this paper, several feature extraction techniques are explored to see their effectiveness in retrieving medical images. The techniques are Gabor transform, discrete wavelet frame, Hu moment invariants, Fourier descriptor, gray level histogram and gray level coherence vector. Experiments are conducted on 3,032 CT images of human brain and promising results are reported.","PeriodicalId":402287,"journal":{"name":"2008 IEEE 10th Workshop on Multimedia Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 10th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2008.4665130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

Content-based image retrieval (CBIR) system helps users retrieve relevant images based on their contents. A reliable content-based feature extraction technique is therefore required to effectively extract most of the information from the images. These important elements include texture, colour, intensity or shape of the object inside an image. CBIR, when used in medical applications, can help medical experts in their diagnosis such as retrieving similar kind of disease and patientpsilas progress monitoring. In this paper, several feature extraction techniques are explored to see their effectiveness in retrieving medical images. The techniques are Gabor transform, discrete wavelet frame, Hu moment invariants, Fourier descriptor, gray level histogram and gray level coherence vector. Experiments are conducted on 3,032 CT images of human brain and promising results are reported.
基于内容的CT脑图像检索中不同特征提取技术的比较
基于内容的图像检索(CBIR)系统可以使用户根据图像的内容检索相关图像。因此,需要一种可靠的基于内容的特征提取技术来有效地提取图像中的大部分信息。这些重要的元素包括图像中物体的纹理、颜色、强度或形状。在医学应用中,CBIR可以帮助医学专家进行诊断,例如检索类似的疾病和监测患者的病情进展。本文探讨了几种特征提取技术在医学图像检索中的有效性。这些技术包括Gabor变换、离散小波帧、Hu矩不变量、傅里叶描述子、灰度直方图和灰度相干向量。对3032张人脑CT图像进行了实验,并取得了可喜的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信