Isotropic Mesh Simplification by Evolving the Geodesic Delaunay Triangulation

Shiqing Xin, Shuangmin Chen, Ying He, Guojin Wang, X. Gu, Hong Qin
{"title":"Isotropic Mesh Simplification by Evolving the Geodesic Delaunay Triangulation","authors":"Shiqing Xin, Shuangmin Chen, Ying He, Guojin Wang, X. Gu, Hong Qin","doi":"10.1109/ISVD.2011.14","DOIUrl":null,"url":null,"abstract":"In this paper, we present an intrinsic algorithm for isotropic mesh simplification. Starting with a set of unevenly distributed samples on the surface, our method computes the geodesic Delaunay triangulation with regard to the sample set and iteratively evolves the Delaunay triangulation such that the Delaunay edges become almost equal in length. Finally, our method outputs the simplified mesh by replacing each curved Delaunay edge with a line segment. We conduct experiments on numerous real-world models of complicated geometry and topology. The promising experimental results demonstrate that the proposed method is intrinsic and insensitive to initial mesh triangulation.","PeriodicalId":152151,"journal":{"name":"2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVD.2011.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we present an intrinsic algorithm for isotropic mesh simplification. Starting with a set of unevenly distributed samples on the surface, our method computes the geodesic Delaunay triangulation with regard to the sample set and iteratively evolves the Delaunay triangulation such that the Delaunay edges become almost equal in length. Finally, our method outputs the simplified mesh by replacing each curved Delaunay edge with a line segment. We conduct experiments on numerous real-world models of complicated geometry and topology. The promising experimental results demonstrate that the proposed method is intrinsic and insensitive to initial mesh triangulation.
演化测地线Delaunay三角剖分的各向同性网格简化
本文提出了一种各向同性网格简化的内在算法。从表面上一组分布不均匀的样本开始,我们的方法计算关于样本集的测地线Delaunay三角剖分,并迭代地发展Delaunay三角剖分,使Delaunay边的长度几乎相等。最后,我们的方法通过将每个弯曲的Delaunay边替换为线段来输出简化的网格。我们在许多复杂几何和拓扑的现实世界模型上进行实验。实验结果表明,该方法具有内在性,且对初始网格三角剖分不敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信