Blur kernel estimation using blurry structure

Shuai Fang, Yuanzhu Liu, Yang Cao
{"title":"Blur kernel estimation using blurry structure","authors":"Shuai Fang, Yuanzhu Liu, Yang Cao","doi":"10.1109/ICIP.2016.7532850","DOIUrl":null,"url":null,"abstract":"Motion deblurring has been a hot spot of research given its wider application range. It has been proven to be effective in several recent studies that utilize structure in the intermediate image to estimate a blur kernel. However, these methods ignore to extract blurry structure from input blurry image. This will cause imbalance in the objective function and introduce artifact errors into the deconvolution process. In this paper we will first exploit a mask determined by convolution of an intermediate image with a kernel to generate blurry structure, and then take it into data term instead of blurry image to overcome the problem. Moreover, we employ sparse prior of kernel and propose a novel L0 regularization for accurate kernel estimation. Experiments across datasets showed that our algorithm achieved the state-of-the-art motion deblurring results.","PeriodicalId":147245,"journal":{"name":"International Conference on Information Photonics","volume":"2677 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Information Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motion deblurring has been a hot spot of research given its wider application range. It has been proven to be effective in several recent studies that utilize structure in the intermediate image to estimate a blur kernel. However, these methods ignore to extract blurry structure from input blurry image. This will cause imbalance in the objective function and introduce artifact errors into the deconvolution process. In this paper we will first exploit a mask determined by convolution of an intermediate image with a kernel to generate blurry structure, and then take it into data term instead of blurry image to overcome the problem. Moreover, we employ sparse prior of kernel and propose a novel L0 regularization for accurate kernel estimation. Experiments across datasets showed that our algorithm achieved the state-of-the-art motion deblurring results.
模糊核估计使用模糊结构
运动去模糊由于其广泛的应用范围而成为研究的热点。在最近的一些研究中,利用中间图像的结构来估计模糊核已经被证明是有效的。然而,这些方法忽略了从输入模糊图像中提取模糊结构。这将导致目标函数的不平衡,并在反卷积过程中引入伪误差。在本文中,我们首先利用中间图像与核卷积确定的掩模来生成模糊结构,然后将其作为数据项代替模糊图像来克服这个问题。此外,我们利用核的稀疏先验,提出了一种新的L0正则化方法来精确估计核。跨数据集的实验表明,我们的算法达到了最先进的运动去模糊效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信