{"title":"Darwinian Robotic Swarms for exploration with minimal communication","authors":"M. Couceiro, R. Rocha, N. Ferreira, P. A. Vargas","doi":"10.1109/CEC.2013.6557562","DOIUrl":null,"url":null,"abstract":"The Robotic Darwinian Particle Swarm Optimization (RDPSO) recently introduced in the literature has the ability to dynamically partition the whole population of robots based on simple “punish-reward” rules. Although this evolutionary algorithm enables the reduction of the amount of required information exchange among robots, a further analysis on the communication complexity of the RDPSO needs to be carried out so as to evaluate its scalability. This paper analyses the architecture of the RDPSO communication system, thus describing the dynamics of the communication data packet structure shared between teammates. Moreover, a set of simple communication rules is also proposed in order to reduce the communication overhead within swarms of robots. Experimental results with teams of 15 real robots show that the proposed methodology reduces the communication overhead, thus improving the scalability and applicability of the RDPSO algorithm.","PeriodicalId":211988,"journal":{"name":"2013 IEEE Congress on Evolutionary Computation","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2013.6557562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
The Robotic Darwinian Particle Swarm Optimization (RDPSO) recently introduced in the literature has the ability to dynamically partition the whole population of robots based on simple “punish-reward” rules. Although this evolutionary algorithm enables the reduction of the amount of required information exchange among robots, a further analysis on the communication complexity of the RDPSO needs to be carried out so as to evaluate its scalability. This paper analyses the architecture of the RDPSO communication system, thus describing the dynamics of the communication data packet structure shared between teammates. Moreover, a set of simple communication rules is also proposed in order to reduce the communication overhead within swarms of robots. Experimental results with teams of 15 real robots show that the proposed methodology reduces the communication overhead, thus improving the scalability and applicability of the RDPSO algorithm.