Identifying Sexism and Misogyny in Pull Request Comments

Sayma Sultana
{"title":"Identifying Sexism and Misogyny in Pull Request Comments","authors":"Sayma Sultana","doi":"10.1145/3551349.3559515","DOIUrl":null,"url":null,"abstract":"Being extremely dominated by men, software development organizations lack diversity. People from other groups often encounter sexist, misogynistic, and discriminatory (SMD) speech during communication. To identify SMD contents, I aim to build an automatic misogyny identification (AMI) tool for the domain of software developers. On this goal, I built a dataset of 10,138 pull request comments mined from Github based on a keyword-based selection, followed by manual validation. Using ten-fold cross-validation, I evaluated ten machine learning algorithms for automatic identification. The best performing model achieved 80% precision, 67.07% recall, 72.5% f-score, and 95.96% accuracy.","PeriodicalId":197939,"journal":{"name":"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3551349.3559515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Being extremely dominated by men, software development organizations lack diversity. People from other groups often encounter sexist, misogynistic, and discriminatory (SMD) speech during communication. To identify SMD contents, I aim to build an automatic misogyny identification (AMI) tool for the domain of software developers. On this goal, I built a dataset of 10,138 pull request comments mined from Github based on a keyword-based selection, followed by manual validation. Using ten-fold cross-validation, I evaluated ten machine learning algorithms for automatic identification. The best performing model achieved 80% precision, 67.07% recall, 72.5% f-score, and 95.96% accuracy.
识别拉请求评论中的性别歧视和厌女症
由于由男性主导,软件开发组织缺乏多样性。来自其他群体的人经常在交流中遇到性别歧视、厌女和歧视性(SMD)言论。为了识别SMD内容,我的目标是为软件开发人员领域构建一个自动厌女识别(AMI)工具。为了实现这个目标,我基于关键字选择从Github中挖掘了10,138条拉请求评论,然后进行了手动验证。使用十倍交叉验证,我评估了十种用于自动识别的机器学习算法。最佳模型的准确率为80%,召回率为67.07%,f值为72.5%,准确率为95.96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信