Data Driven Non-Verbal Behavior Generation for Humanoid Robots

Taras Kucherenko
{"title":"Data Driven Non-Verbal Behavior Generation for Humanoid Robots","authors":"Taras Kucherenko","doi":"10.1145/3242969.3264970","DOIUrl":null,"url":null,"abstract":"Social robots need non-verbal behavior to make an interaction pleasant and efficient. Most of the models for generating non-verbal behavior are rule-based and hence can produce a limited set of motions and are tuned to a particular scenario. In contrast, data-driven systems are flexible and easily adjustable. Hence we aim to learn a data-driven model for generating non-verbal behavior (in a form of a 3D motion sequence) for humanoid robots. Our approach is based on a popular and powerful deep generative model: Variation Autoencoder (VAE). Input for our model will be multi-modal and we will iteratively increase its complexity: first, it will only use the speech signal, then also the text transcription and finally - the non-verbal behavior of the conversation partner. We will evaluate our system on the virtual avatars as well as on two humanoid robots with different embodiments: NAO and Furhat. Our model will be easily adapted to a novel domain: this can be done by providing application specific training data.","PeriodicalId":308751,"journal":{"name":"Proceedings of the 20th ACM International Conference on Multimodal Interaction","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3242969.3264970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Social robots need non-verbal behavior to make an interaction pleasant and efficient. Most of the models for generating non-verbal behavior are rule-based and hence can produce a limited set of motions and are tuned to a particular scenario. In contrast, data-driven systems are flexible and easily adjustable. Hence we aim to learn a data-driven model for generating non-verbal behavior (in a form of a 3D motion sequence) for humanoid robots. Our approach is based on a popular and powerful deep generative model: Variation Autoencoder (VAE). Input for our model will be multi-modal and we will iteratively increase its complexity: first, it will only use the speech signal, then also the text transcription and finally - the non-verbal behavior of the conversation partner. We will evaluate our system on the virtual avatars as well as on two humanoid robots with different embodiments: NAO and Furhat. Our model will be easily adapted to a novel domain: this can be done by providing application specific training data.
数据驱动的类人机器人非语言行为生成
社交机器人需要非语言行为来使互动愉快和有效。大多数产生非语言行为的模型都是基于规则的,因此可以产生一组有限的动作,并根据特定的场景进行调整。相比之下,数据驱动的系统灵活且易于调整。因此,我们的目标是学习一种数据驱动模型,用于为人形机器人生成非语言行为(以3D运动序列的形式)。我们的方法是基于一个流行的和强大的深度生成模型:变化自编码器(VAE)。我们的模型的输入将是多模态的,我们将迭代地增加它的复杂性:首先,它将只使用语音信号,然后是文本转录,最后是对话伙伴的非语言行为。我们将在虚拟化身以及两个具有不同实施例的人形机器人NAO和Furhat上评估我们的系统。我们的模型将很容易适应新的领域:这可以通过提供特定于应用程序的训练数据来实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信