Exploring Urban Lifestyles Using a Nonparametric Temporal Graphical Model

Shoaib Jameel, Yi Liao, Wai Lam, S. Schockaert, Xing Xie
{"title":"Exploring Urban Lifestyles Using a Nonparametric Temporal Graphical Model","authors":"Shoaib Jameel, Yi Liao, Wai Lam, S. Schockaert, Xing Xie","doi":"10.1145/2970398.2970401","DOIUrl":null,"url":null,"abstract":"We propose a new unsupervised nonparametric temporal topic model to discover lifestyle patterns from location-based social networks. By relating the textual content, time stamps, and venue categories associated to user check-ins, our framework detects the predominant lifestyle patterns in a given geographic region. The temporal component of our model allows us to analyse the evolution of lifestyle patterns throughout the year. We provide examples of interesting patterns that have been discovered by our model, and we show that our model compares favourably to existing approaches in terms of lifestyle pattern quality and computation time. We also quantitatively show that our model outperforms existing methods in a time stamp prediction task.","PeriodicalId":443715,"journal":{"name":"Proceedings of the 2016 ACM International Conference on the Theory of Information Retrieval","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM International Conference on the Theory of Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2970398.2970401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a new unsupervised nonparametric temporal topic model to discover lifestyle patterns from location-based social networks. By relating the textual content, time stamps, and venue categories associated to user check-ins, our framework detects the predominant lifestyle patterns in a given geographic region. The temporal component of our model allows us to analyse the evolution of lifestyle patterns throughout the year. We provide examples of interesting patterns that have been discovered by our model, and we show that our model compares favourably to existing approaches in terms of lifestyle pattern quality and computation time. We also quantitatively show that our model outperforms existing methods in a time stamp prediction task.
使用非参数时间图形模型探索城市生活方式
我们提出了一种新的无监督非参数时间主题模型,用于从基于位置的社交网络中发现生活方式模式。通过将文本内容、时间戳和与用户签到相关的地点类别关联起来,我们的框架可以检测给定地理区域的主要生活方式模式。我们的模型的时间成分使我们能够分析全年生活方式的演变。我们提供了由我们的模型发现的有趣模式的例子,并表明我们的模型在生活方式模式质量和计算时间方面优于现有方法。我们还定量地表明,我们的模型在时间戳预测任务中优于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信