{"title":"A van Benthem Theorem for Fuzzy Modal Logic","authors":"P. Wild, Lutz Schröder, D. Pattinson, B. König","doi":"10.1145/3209108.3209180","DOIUrl":null,"url":null,"abstract":"We present a fuzzy (or quantitative) version of the van Benthem theorem, which characterizes propositional modal logic as the bisimulation-invariant fragment of first-order logic. Specifically, we consider a first-order fuzzy predicate logic along with its modal fragment, and show that the fuzzy first-order formulas that are non-expansive w.r.t. the natural notion of bisimulation distance are exactly those that can be approximated by fuzzy modal formulas.","PeriodicalId":389131,"journal":{"name":"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3209108.3209180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
We present a fuzzy (or quantitative) version of the van Benthem theorem, which characterizes propositional modal logic as the bisimulation-invariant fragment of first-order logic. Specifically, we consider a first-order fuzzy predicate logic along with its modal fragment, and show that the fuzzy first-order formulas that are non-expansive w.r.t. the natural notion of bisimulation distance are exactly those that can be approximated by fuzzy modal formulas.