{"title":"MPP: A Join-dividing Method for Multi-table Privacy Preservation","authors":"Wei-qing Huang, Jianfeng Xia, Min Yu, Chao Liu","doi":"10.1109/ISCC.2018.8538724","DOIUrl":null,"url":null,"abstract":"In regard to relational databases, studies in this area typically focus on individual privacy leakage in one table. However, in reality, a database usually has many tables, some of them contain correlation information about individual, which can provide additional implication as background knowledge to attacker. In this paper, we innovatively propose a new method named MPP (Multi-table Privacy Preservation) which combines Lossy-join with Bucketization to enhance the individual privacy in database. We consider the privacy disclosure problem from the global sight of the entire dataset instead of a table. Based on this method, we not only solve the correlation information leakage by other tables, but also improve the data utility. Extensive experiments on 32.8GB real-world Express data demonstrate the effectiveness and efficiency of our approach in terms of data utility and computational cost.","PeriodicalId":233592,"journal":{"name":"2018 IEEE Symposium on Computers and Communications (ISCC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC.2018.8538724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In regard to relational databases, studies in this area typically focus on individual privacy leakage in one table. However, in reality, a database usually has many tables, some of them contain correlation information about individual, which can provide additional implication as background knowledge to attacker. In this paper, we innovatively propose a new method named MPP (Multi-table Privacy Preservation) which combines Lossy-join with Bucketization to enhance the individual privacy in database. We consider the privacy disclosure problem from the global sight of the entire dataset instead of a table. Based on this method, we not only solve the correlation information leakage by other tables, but also improve the data utility. Extensive experiments on 32.8GB real-world Express data demonstrate the effectiveness and efficiency of our approach in terms of data utility and computational cost.