MPP: A Join-dividing Method for Multi-table Privacy Preservation

Wei-qing Huang, Jianfeng Xia, Min Yu, Chao Liu
{"title":"MPP: A Join-dividing Method for Multi-table Privacy Preservation","authors":"Wei-qing Huang, Jianfeng Xia, Min Yu, Chao Liu","doi":"10.1109/ISCC.2018.8538724","DOIUrl":null,"url":null,"abstract":"In regard to relational databases, studies in this area typically focus on individual privacy leakage in one table. However, in reality, a database usually has many tables, some of them contain correlation information about individual, which can provide additional implication as background knowledge to attacker. In this paper, we innovatively propose a new method named MPP (Multi-table Privacy Preservation) which combines Lossy-join with Bucketization to enhance the individual privacy in database. We consider the privacy disclosure problem from the global sight of the entire dataset instead of a table. Based on this method, we not only solve the correlation information leakage by other tables, but also improve the data utility. Extensive experiments on 32.8GB real-world Express data demonstrate the effectiveness and efficiency of our approach in terms of data utility and computational cost.","PeriodicalId":233592,"journal":{"name":"2018 IEEE Symposium on Computers and Communications (ISCC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC.2018.8538724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In regard to relational databases, studies in this area typically focus on individual privacy leakage in one table. However, in reality, a database usually has many tables, some of them contain correlation information about individual, which can provide additional implication as background knowledge to attacker. In this paper, we innovatively propose a new method named MPP (Multi-table Privacy Preservation) which combines Lossy-join with Bucketization to enhance the individual privacy in database. We consider the privacy disclosure problem from the global sight of the entire dataset instead of a table. Based on this method, we not only solve the correlation information leakage by other tables, but also improve the data utility. Extensive experiments on 32.8GB real-world Express data demonstrate the effectiveness and efficiency of our approach in terms of data utility and computational cost.
MPP:一种多表隐私保护的连接分割方法
关于关系数据库,该领域的研究通常集中在一个表中的个人隐私泄漏。然而,在现实中,一个数据库通常包含许多表,其中一些表包含有关个人的相关信息,这些信息可以作为背景知识为攻击者提供额外的暗示。本文创新性地提出了一种多表隐私保护方法MPP (Multi-table Privacy Preservation),该方法将有损连接与桶化相结合,增强了数据库中的个人隐私。我们从整个数据集的全局而不是一个表的角度来考虑隐私披露问题。在此基础上,既解决了其他表的关联信息泄漏问题,又提高了数据的实用性。在32.8GB真实Express数据上的大量实验证明了我们的方法在数据效用和计算成本方面的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信