{"title":"An HBC-based continuous bio-potential system monitoring using 30MHz OOK modulation","authors":"Nicolas Fahier, W. Fang","doi":"10.1109/BIOCAS.2017.8325051","DOIUrl":null,"url":null,"abstract":"In this paper we describe a body grounded biomedical signal sensing system that uses the human body as a wireless transmission media. The body channel measurements in terms of path loss and frequency response lead the system to use an On-Off Keying type of modulation to ensure a successful signal transmission throughout the entire human body using a 30MHz carrier frequency for the OOK signal. The bio-potential signal sensing presented no disturbances while transmitting the signal and the results of the analog front receiver's output validates the use of this type of modulation for a transfer rate of 1.875Mbps, suitable for future time division based multiple access body sensor network and any body sensor locations.","PeriodicalId":361477,"journal":{"name":"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2017.8325051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In this paper we describe a body grounded biomedical signal sensing system that uses the human body as a wireless transmission media. The body channel measurements in terms of path loss and frequency response lead the system to use an On-Off Keying type of modulation to ensure a successful signal transmission throughout the entire human body using a 30MHz carrier frequency for the OOK signal. The bio-potential signal sensing presented no disturbances while transmitting the signal and the results of the analog front receiver's output validates the use of this type of modulation for a transfer rate of 1.875Mbps, suitable for future time division based multiple access body sensor network and any body sensor locations.