Identifying line-to-ground faulted phase in low and medium voltage AC microgrid using principal component analysis and supervised machine-learning

M. Uzair, Li Li, Jianguo Zhu
{"title":"Identifying line-to-ground faulted phase in low and medium voltage AC microgrid using principal component analysis and supervised machine-learning","authors":"M. Uzair, Li Li, Jianguo Zhu","doi":"10.1109/AUPEC.2018.8757918","DOIUrl":null,"url":null,"abstract":"A supervised machine-learning based approach for faulted phase identification in bolted, low- and high-impedance line-to-ground faults using principal component analysis for feature extraction from multiple input signals is presented in this paper. DIgSILENT PowerFactory is used for simulating the underlying microgrid to obtain fault related data, while MATLAB is used for machine learning application. A 15-fold cross validation is applied to the training dataset for evaluation of different machine learning models and the results show supreme performance compared to previous methods.","PeriodicalId":314530,"journal":{"name":"2018 Australasian Universities Power Engineering Conference (AUPEC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Australasian Universities Power Engineering Conference (AUPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUPEC.2018.8757918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A supervised machine-learning based approach for faulted phase identification in bolted, low- and high-impedance line-to-ground faults using principal component analysis for feature extraction from multiple input signals is presented in this paper. DIgSILENT PowerFactory is used for simulating the underlying microgrid to obtain fault related data, while MATLAB is used for machine learning application. A 15-fold cross validation is applied to the training dataset for evaluation of different machine learning models and the results show supreme performance compared to previous methods.
利用主成分分析和监督式机器学习识别中、低压交流微电网线路对地故障相位
本文提出了一种基于监督机器学习的方法,用于螺栓连接、低阻抗和高阻抗线路对地故障的故障相位识别,该方法使用主成分分析从多个输入信号中提取特征。使用DIgSILENT PowerFactory对底层微电网进行仿真,获取故障相关数据,使用MATLAB进行机器学习应用。对训练数据集进行了15倍交叉验证,以评估不同的机器学习模型,与以前的方法相比,结果显示出最高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信