Modified Differential Evolution for Dynamic Optimization Problems

Jiang Liqiang, Qiang Hongfu
{"title":"Modified Differential Evolution for Dynamic Optimization Problems","authors":"Jiang Liqiang, Qiang Hongfu","doi":"10.1109/ISDEA.2012.647","DOIUrl":null,"url":null,"abstract":"Modified differential evolution algorithm (MDE) is proposed for dynamic optimization problems. The new algorithm divides the population into two, a main subpopulation and an assistant one. The main subpopulation keeps invariant and searches locally. The assistant subpopulatioin is re-initialized at random and searches globally. The results show that MDE can track the changing extreme promptly and accurately and is capable of efficiently solving dynamic optmization problems.","PeriodicalId":267532,"journal":{"name":"2012 Second International Conference on Intelligent System Design and Engineering Application","volume":"285 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Second International Conference on Intelligent System Design and Engineering Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDEA.2012.647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modified differential evolution algorithm (MDE) is proposed for dynamic optimization problems. The new algorithm divides the population into two, a main subpopulation and an assistant one. The main subpopulation keeps invariant and searches locally. The assistant subpopulatioin is re-initialized at random and searches globally. The results show that MDE can track the changing extreme promptly and accurately and is capable of efficiently solving dynamic optmization problems.
动态优化问题的改进微分进化
针对动态优化问题,提出了改进差分进化算法(MDE)。新算法将种群划分为两个子集,一个主子集和一个辅助子集。主子种群保持不变并局部搜索。辅助子种群随机重新初始化,并进行全局搜索。结果表明,该方法能够快速准确地跟踪变化的极值,能够有效地求解动态优化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信