Channel Estimation for Massive MU-MIMO Systems with Real Image Denoising Network

Ruilang He, Wuyang Zhou
{"title":"Channel Estimation for Massive MU-MIMO Systems with Real Image Denoising Network","authors":"Ruilang He, Wuyang Zhou","doi":"10.1109/icccs55155.2022.9845979","DOIUrl":null,"url":null,"abstract":"Channel estimation is one of the critical challenges for massive multiuser multiple-input multiple-output (MU-MIMO) systems. In this paper, a deep learning (DL) method, exploiting the sparsity of the massive MIMO channel, is proposed to improve the performance of least squares (LS) estimation. Specifically, we first consider the sparse massive MIMO channel matrix as a natural image. Then, a novel channel estimation method based on real image denoising network (RIDNet) is proposed to effectively mitigate the impact of noise on LS estimation. Finally, simulation results are provided to corroborate the superiority of the proposed method in performance and robustness.","PeriodicalId":121713,"journal":{"name":"2022 7th International Conference on Computer and Communication Systems (ICCCS)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Computer and Communication Systems (ICCCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icccs55155.2022.9845979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Channel estimation is one of the critical challenges for massive multiuser multiple-input multiple-output (MU-MIMO) systems. In this paper, a deep learning (DL) method, exploiting the sparsity of the massive MIMO channel, is proposed to improve the performance of least squares (LS) estimation. Specifically, we first consider the sparse massive MIMO channel matrix as a natural image. Then, a novel channel estimation method based on real image denoising network (RIDNet) is proposed to effectively mitigate the impact of noise on LS estimation. Finally, simulation results are provided to corroborate the superiority of the proposed method in performance and robustness.
基于真实图像去噪网络的海量MU-MIMO系统信道估计
信道估计是大规模多用户多输入多输出(MU-MIMO)系统的关键问题之一。本文提出了一种利用海量MIMO信道的稀疏性来提高最小二乘估计性能的深度学习(DL)方法。具体来说,我们首先将稀疏大规模MIMO信道矩阵视为自然图像。在此基础上,提出了一种基于实景图像去噪网络(RIDNet)的信道估计方法,有效缓解了噪声对LS估计的影响。最后,仿真结果验证了该方法在性能和鲁棒性方面的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信