Machine learning techniques for diagnosing and locating faults through the automated monitoring of power electronic components in shipboard power systems

A. J. Mair, E. Davidson, S. Mcarthur, S. Srivastava, K. Schoder, D. Cartes
{"title":"Machine learning techniques for diagnosing and locating faults through the automated monitoring of power electronic components in shipboard power systems","authors":"A. J. Mair, E. Davidson, S. Mcarthur, S. Srivastava, K. Schoder, D. Cartes","doi":"10.1109/ESTS.2009.4906553","DOIUrl":null,"url":null,"abstract":"The management and control of shipboard medium voltage AC (MVAC) and medium voltage DC (MVDC) power system architectures under fault conditions present a number of challenges. The use and resulting interaction of multiple power electronic components in mesh-like power distribution architectures possibly result in the effects of faults being detectable throughout the system, for example, line-to-hull faults on DC systems with high resistive grounding.","PeriodicalId":446953,"journal":{"name":"2009 IEEE Electric Ship Technologies Symposium","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Electric Ship Technologies Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESTS.2009.4906553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

The management and control of shipboard medium voltage AC (MVAC) and medium voltage DC (MVDC) power system architectures under fault conditions present a number of challenges. The use and resulting interaction of multiple power electronic components in mesh-like power distribution architectures possibly result in the effects of faults being detectable throughout the system, for example, line-to-hull faults on DC systems with high resistive grounding.
通过船舶电力系统中电力电子元件的自动监测来诊断和定位故障的机器学习技术
船舶中压交流(MVAC)和中压直流(MVDC)电力系统架构在故障条件下的管理和控制提出了许多挑战。在网状配电体系结构中,多个电力电子元件的使用及其相互作用可能导致整个系统都能检测到故障的影响,例如,在具有高电阻接地的直流系统中,线路到船体的故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信