Non-Invasive Atrial Fibrillation Driver Localization Using Recurrent Neural Networks and Body Surface Potentials

"Miriam Gutiérrez Fernández-Calvillo, Miguel Ángel Cámara-Vázquez, I. Hernández-Romero, Maria de la Salud Guillem Sánchez", Andreu M. Climent, Ó. Barquero-Pérez
{"title":"Non-Invasive Atrial Fibrillation Driver Localization Using Recurrent Neural Networks and Body Surface Potentials","authors":"\"Miriam Gutiérrez Fernández-Calvillo, Miguel Ángel Cámara-Vázquez, I. Hernández-Romero, Maria de la Salud Guillem Sánchez\", Andreu M. Climent, Ó. Barquero-Pérez","doi":"10.22489/CinC.2022.163","DOIUrl":null,"url":null,"abstract":"Ablation is the main therapy to control Atrial Fibrillation (AF). However, the underlying mechanism for AF initiation and maintenance remains mostly unknown and represent a major challenge. ECG Imaging (ECGI) has been presented to address this issue, but it is an ill-posed problem and presents several limitations. Many Deep Learning methods have been proposed for AF characterization, but few provide a solution involving the location of the AF driver. In this work, we propose finding the location of AF drivers using Body Surface Potentials (BSPs) and CNN-LSTM with an attention layer networks as a supervised classification problem. The AF driver was correctly located the 94.42% of the time with an average Cohen's Kappa of 0.87. Hence, the proposed model could provide an effective solution for identifying AF driver location for ablation procedures as a non-invasive approach.","PeriodicalId":117840,"journal":{"name":"2022 Computing in Cardiology (CinC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2022.163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ablation is the main therapy to control Atrial Fibrillation (AF). However, the underlying mechanism for AF initiation and maintenance remains mostly unknown and represent a major challenge. ECG Imaging (ECGI) has been presented to address this issue, but it is an ill-posed problem and presents several limitations. Many Deep Learning methods have been proposed for AF characterization, but few provide a solution involving the location of the AF driver. In this work, we propose finding the location of AF drivers using Body Surface Potentials (BSPs) and CNN-LSTM with an attention layer networks as a supervised classification problem. The AF driver was correctly located the 94.42% of the time with an average Cohen's Kappa of 0.87. Hence, the proposed model could provide an effective solution for identifying AF driver location for ablation procedures as a non-invasive approach.
基于循环神经网络和体表电位的无创心房颤动驱动定位
消融是控制心房颤动(AF)的主要治疗方法。然而,心房颤动发生和维持的潜在机制仍然未知,这是一个重大挑战。心电图成像(ECGI)已经提出了解决这一问题,但它是一个不适定的问题,并提出了一些局限性。许多深度学习方法已被提出用于自动对焦表征,但很少提供涉及自动对焦驱动程序位置的解决方案。在这项工作中,我们提出使用身体表面电位(BSPs)和CNN-LSTM与注意层网络作为监督分类问题来寻找AF驱动程序的位置。自动驾驶的正确率为94.42%,科恩Kappa平均值为0.87。因此,所提出的模型可以作为非侵入性方法,为识别AF驱动位置提供有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信