Distributed Optimal Control Synthesis for Multi-Robot Systems under Global Temporal Tasks

Y. Kantaros, M. Zavlanos
{"title":"Distributed Optimal Control Synthesis for Multi-Robot Systems under Global Temporal Tasks","authors":"Y. Kantaros, M. Zavlanos","doi":"10.1109/ICCPS.2018.00024","DOIUrl":null,"url":null,"abstract":"This paper proposes a distributed sampling-based algorithm for optimal multi-robot control synthesis under global Linear Temporal Logic (LTL) formulas. Existing planning approaches under global temporal goals rely on graph search techniques applied to a synchronous product automaton constructed among the robots. In our previous work, we have proposed a more tractable centralized sampling-based algorithm that builds incrementally trees that approximate the state-space and transitions of the synchronous product automaton and does not require sophisticated graph search techniques. In this work, we provide a distributed implementation of this sampling-based algorithm, whereby the robots collaborate to build subtrees that decreases the computational time significantly. We provide theoretical guarantees showing that the distributed algorithm preserves the probabilistic completeness and asymptotic optimality of its centralized counterpart. To the best of our knowledge, this is the first distributed, computationally efficient, probabilistically complete, and asymptotically optimal control synthesis algorithm for multi-robot systems under global temporal tasks.","PeriodicalId":199062,"journal":{"name":"2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS)","volume":"39 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPS.2018.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper proposes a distributed sampling-based algorithm for optimal multi-robot control synthesis under global Linear Temporal Logic (LTL) formulas. Existing planning approaches under global temporal goals rely on graph search techniques applied to a synchronous product automaton constructed among the robots. In our previous work, we have proposed a more tractable centralized sampling-based algorithm that builds incrementally trees that approximate the state-space and transitions of the synchronous product automaton and does not require sophisticated graph search techniques. In this work, we provide a distributed implementation of this sampling-based algorithm, whereby the robots collaborate to build subtrees that decreases the computational time significantly. We provide theoretical guarantees showing that the distributed algorithm preserves the probabilistic completeness and asymptotic optimality of its centralized counterpart. To the best of our knowledge, this is the first distributed, computationally efficient, probabilistically complete, and asymptotically optimal control synthesis algorithm for multi-robot systems under global temporal tasks.
全局时间任务下多机器人系统的分布式最优控制综合
提出了一种基于分布式采样的全局线性时序逻辑(LTL)公式下的多机器人最优控制综合算法。现有的全局时间目标下的规划方法依赖于应用于机器人之间构建的同步产品自动机的图搜索技术。在我们之前的工作中,我们提出了一种更易于处理的基于集中采样的算法,该算法构建了近似同步产品自动机的状态空间和转换的增量树,并且不需要复杂的图搜索技术。在这项工作中,我们提供了这种基于采样的算法的分布式实现,通过这种算法,机器人可以协作构建子树,从而显着减少计算时间。我们提供了理论保证,表明分布式算法保留了其集中式对等体的概率完备性和渐近最优性。据我们所知,这是全球时间任务下多机器人系统的第一个分布式、计算效率高、概率完备、渐近最优控制综合算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信