Application Driven SCM and NAND Flash Hybrid SSD Design for Data-Centric Computing System

Shun Okamoto, Chao Sun, Shogo Hachiya, Tomoaki Yamada, Yusuke Saito, T. Iwasaki, K. Takeuchi
{"title":"Application Driven SCM and NAND Flash Hybrid SSD Design for Data-Centric Computing System","authors":"Shun Okamoto, Chao Sun, Shogo Hachiya, Tomoaki Yamada, Yusuke Saito, T. Iwasaki, K. Takeuchi","doi":"10.1109/IMW.2015.7150277","DOIUrl":null,"url":null,"abstract":"In order to efficiently store, retrieve and process big data, the data-centric computing paradigm is adopted and an application-driven storage class memory (SCM)/NAND flash hybrid solid-state drive (SSD) is designed. SSD data management algorithms minimize data movement inside the storage system and the SSD system design parameter, SCM/NAND capacity ratio, is chosen depending on the application. Design guidelines are proposed, based on the evaluation of three SCM/NAND flash hybrid SSDs with: (1) write-back (WB) cache, (2) write-optimized data management (WO-DM) and (3) read-write balanced data management (RWB-DM) algorithms. The WO-DM algorithm achieves the highest SSD performance for write-intensive applications, whereas RWB-DM is most appropriate for read-hot (frequently accessed)-random workloads. As long as the workload is not read-cold-sequential or write-cold-sequential, adding SCM to the NAND SSD system is cost-effective to boost performance. Less than 10% SCM/NAND capacity ratios provides 10x speed, compared to the NAND flash-only SSD.","PeriodicalId":107437,"journal":{"name":"2015 IEEE International Memory Workshop (IMW)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Memory Workshop (IMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMW.2015.7150277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

In order to efficiently store, retrieve and process big data, the data-centric computing paradigm is adopted and an application-driven storage class memory (SCM)/NAND flash hybrid solid-state drive (SSD) is designed. SSD data management algorithms minimize data movement inside the storage system and the SSD system design parameter, SCM/NAND capacity ratio, is chosen depending on the application. Design guidelines are proposed, based on the evaluation of three SCM/NAND flash hybrid SSDs with: (1) write-back (WB) cache, (2) write-optimized data management (WO-DM) and (3) read-write balanced data management (RWB-DM) algorithms. The WO-DM algorithm achieves the highest SSD performance for write-intensive applications, whereas RWB-DM is most appropriate for read-hot (frequently accessed)-random workloads. As long as the workload is not read-cold-sequential or write-cold-sequential, adding SCM to the NAND SSD system is cost-effective to boost performance. Less than 10% SCM/NAND capacity ratios provides 10x speed, compared to the NAND flash-only SSD.
应用驱动的单片机和NAND闪存混合SSD数据中心计算系统设计
为了高效地存储、检索和处理大数据,采用以数据为中心的计算范式,设计了应用驱动的存储类内存(SCM)/NAND闪存混合固态硬盘(SSD)。SSD数据管理算法最大限度地减少了存储系统内部的数据移动,并且SSD系统设计参数SCM/NAND容量比根据应用选择。基于对三种SCM/NAND闪存混合ssd的评估,提出了设计准则:(1)回写(WB)缓存,(2)写优化数据管理(WO-DM)和(3)读写平衡数据管理(RWB-DM)算法。对于写密集型应用,WO-DM算法可以实现最高的SSD性能,而RWB-DM最适合读热(频繁访问)随机工作负载。只要工作负载不是冷顺序读或冷顺序写,在NAND SSD系统中添加SCM对于提高性能是经济有效的。低于10%的SCM/NAND容量比可提供10倍的速度,与NAND闪存SSD相比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信