Randomized algorithms for tensor response regression

Zhe Cheng, Xiangjian Xu, Zihao Song, Weihua Zhao
{"title":"Randomized algorithms for tensor response regression","authors":"Zhe Cheng, Xiangjian Xu, Zihao Song, Weihua Zhao","doi":"10.1002/sam.11603","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the estimation algorithm of tensor response on vector covariate regression model. Based on projection theory of tensor and the idea of randomized algorithm for tensor decomposition, three new algorithms named SHOLRR, RHOLRR and RSHOLRR are proposed under the low‐rank Tucker decomposition and some theoretical analyses for two randomized algorithms are also provided. To explore the nonlinear relationship between tensor response and vector covariate, we develop the KRSHOLRR algorithm based on kernel trick and RSHOLRR algorithm. Our proposed algorithms can not only guarantee high estimation accuracy but also have the advantage of fast computing speed, especially for higher‐order tensor response. Through extensive synthesized data analyses and applications to two real datasets, we demonstrate the outperformance of our proposed algorithms over the stat‐of‐art.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the estimation algorithm of tensor response on vector covariate regression model. Based on projection theory of tensor and the idea of randomized algorithm for tensor decomposition, three new algorithms named SHOLRR, RHOLRR and RSHOLRR are proposed under the low‐rank Tucker decomposition and some theoretical analyses for two randomized algorithms are also provided. To explore the nonlinear relationship between tensor response and vector covariate, we develop the KRSHOLRR algorithm based on kernel trick and RSHOLRR algorithm. Our proposed algorithms can not only guarantee high estimation accuracy but also have the advantage of fast computing speed, especially for higher‐order tensor response. Through extensive synthesized data analyses and applications to two real datasets, we demonstrate the outperformance of our proposed algorithms over the stat‐of‐art.
张量响应回归的随机算法
本文研究向量协变量回归模型上张量响应的估计算法。基于张量投影理论和张量分解的随机化算法思想,提出了低秩Tucker分解下的SHOLRR、RHOLRR和RSHOLRR三种新算法,并对两种随机化算法进行了理论分析。为了探索张量响应与矢量协变量之间的非线性关系,我们开发了基于核技巧和RSHOLRR算法的KRSHOLRR算法。我们提出的算法不仅保证了较高的估计精度,而且具有计算速度快的优点,特别是对于高阶张量响应。通过广泛的综合数据分析和对两个真实数据集的应用,我们证明了我们提出的算法在最新技术上的优异性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信